深度学习Week4——猴痘病识别

文章目录
深度学习Week4——猴痘病识别
一、前言
二、我的环境
三、前期工作
1、配置环境
2、导入数据
3、划分数据集
四、构建CNN网络
五、训练模型
1、设置超参数
2、编写训练函数
3、编写测试函数
六、结果可视化
1、Loss图和Accuracy图
2、指定图片识别
3、加载并保存模型
七、拔高训练

一、前言

由于我的设备没有GPU,因此直接使用device = torch.device("cpu")

二、我的环境

  • 电脑系统:Windows 10
  • 语言环境:Python 3.11.3
  • 编译器:Pycharm2023.2.3
    深度学习环境:Pytorch
    显卡及显存:无

三、前期工作

1、导入库并配置环境

import torch
import torch.nn as nn
import torchvision.transforms as transforms
import torchvision	
from torchvision import transforms, datasets
import os,PIL,pathlib,random
import numpy as np

device = torch.device("cpu")

device

输出:

device(type='cpu')

至此,我们的环境已经配置完成。

2、 导入数据

我们下载好文件到自己的文件夹目录中,复制文件地址备用,注意这里要将[str(path).split("\\")[4] for path in data_paths][]里的数字改为自己路径所对应的数字,例如我的是“4”

data_dir = 'E:\DeepLearning\Data_\Week4'
data_dir = pathlib.Path(data_dir)

data_paths = list(data_dir.glob('*'))
classeNames = [str(path).split("\\")[4] for path in data_paths]
classeNames
输出:
['Monkeypox', 'Others']
data_dir = 'E:\DeepLearning\Data_\Week4'
data_dir = pathlib.Path(data_dir)

image_count = len(list(data_dir.glob('*/*.jpg')))
print("图片总数为:",image_count)

输出:

图片总数为: 2142

然后我们可以指定一张猴痘的照片作为测试是否导入数据成功。

roses = list(data_dir.glob('Monkeypox/*.jpg'))
PIL.Image.open(str(roses[0]))
这里由于部分照片可能引人不适,不作展示,感兴趣的可以自行复制代码测试~
total_datadir = 'E:\DeepLearning\Data_\Week4'

# 关于transforms.Compose的更多介绍可以参考:https://blog.csdn.net/qq_38251616/article/details/124878863
train_transforms = transforms.Compose([
    transforms.Resize([224, 224]),  # 将输入图片resize成统一尺寸
    transforms.ToTensor(),          # 将PIL Image或numpy.ndarray转换为tensor,并归一化到[0,1]之间
    transforms.Normalize(           # 标准化处理-->转换为标准正太分布(高斯分布),使模型更容易收敛
        mean=[0.485, 0.456, 0.406], 
        std=[0.229, 0.224, 0.225])  # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。
])

total_data = datasets.ImageFolder(total_datadir,transform=train_transforms)
total_data
输出:
Dataset ImageFolder
    Number of datapoints: 2142
    Root location: E:\DeepLearning\Data_\Week4
    StandardTransform
Transform: Compose(
               Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=warn)
               ToTensor()
               Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
           )
total_data.class_to_idx

输出:

{'Monkeypox': 0, 'Others': 1}

3、划分训练集

  • train_size表示训练集大小,通过将总体数据长度的80%转换为整数得到;
  • test_size表示测试集大小,是总体数据长度减去训练集大小。
    而使用torch.utils.data.random_split()方法进行数据集划分。该方法将总体数据total_data按照指定的大小比例([train_size, test_size])随机划分为训练集和测试集,并将划分结果分别赋值给train_dataset和test_dataset两个变量。
train_size = int(0.8 * len(total_data))
test_size  = len(total_data) - train_size
train_dataset, test_dataset = torch.utils.data.random_split(total_data, [train_size, test_size])
train_dataset, test_dataset

结果:

(<torch.utils.data.dataset.Subset at 0x25d873bb7d0>,
 <torch.utils.data.dataset.Subset at 0x25d8aaa4e10>)
train_size,test_size
(1713, 429)
batch_size = 32

train_dl = torch.utils.data.DataLoader(train_dataset,
                                           batch_size = batch_size,
                                           shuffle = True,
                                           num_workers = 1)
test_dl = torch.utils.data.DataLoader(test_dataset,
                                          batch_size = batch_size,
                                          shuffle = True,
                                          num_workers = 1)

for X, y in test_dl:
    print("Shape of X [N, C, H, W]: ", X.shape)
    print("Shape of y: ", y.shape, y.dtype)
    break

输出:

Shape of X [N, C, H, W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

四 、构建简单的CNN网络

nn.Conv2d()函数:
第一个参数(in_channels)是输入的channel数量
第二个参数(out_channels)是输出的channel数量
第三个参数(kernel_size)是卷积核大小
第四个参数(stride)和第五个参数(padding)分别是步长和填充大小,默认为1和0,一般可省略。

import torch.nn.functional as F

class Network_bn(nn.Module):
    def __init__(self):
        super(Network_bn, self).__init__()
        self.conv1 = nn.Conv2d(in_channels = 3, out_channels = 12, kernel_size = 5, stride = 1, padding = 0)
        self.bn1 = nn.BatchNorm2d(12)
        self.conv2 = nn.Conv2d(in_channels = 12, out_channels = 12, kernel_size = 5)
        self.bn2 = nn.BatchNorm2d(12)
        self.pool = nn.MaxPool2d(2,2)
        self.conv4 = nn.Conv2d(in_channels = 12, out_channels = 24, kernel_size = 50)
        self.bn4 = nn.BatchNorm2d(24)
        self.conv5 = nn.Conv2d(in_channels = 24, out_channels = 24, kernel_size = 5)
        self.bn5 = nn.BatchNorm2d(24)
        self.fc1 = nn.Linear(24 * 50 * 50, len(classeNames))

    def forward(self, x):
        x = F.relu(self.bn1(self.conv1(x)))      
        x = F.relu(self.bn2(self.conv2(x)))     
        x = self.pool(x)                        
        x = F.relu(self.bn4(self.conv4(x)))     
        x = F.relu(self.bn5(self.conv5(x)))  
        x = self.pool(x)                        
        x = x.view(-1, 24*50*50)
        x = self.fc1(x)

        return x

print("Using {} device".format(device))

model = Network_bn().to(device)
model

输出:

Using cpu device

Network_bn(
  (conv1): Conv2d(3, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn1): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv2): Conv2d(12, 12, kernel_size=(5, 5), stride=(1, 1))
  (bn2): BatchNorm2d(12, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (pool): MaxPool2d(kernel_size=2, stride=2, padding=0, dilation=1, ceil_mode=False)
  (conv4): Conv2d(12, 24, kernel_size=(50, 50), stride=(1, 1))
  (bn4): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (conv5): Conv2d(24, 24, kernel_size=(5, 5), stride=(1, 1))
  (bn5): BatchNorm2d(24, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)
  (fc1): Linear(in_features=60000, out_features=2, bias=True)
)

五、训练模型

1、设置超参数

loss_fn    = nn.CrossEntropyLoss() # 创建损失函数
learn_rate = 1e-4 # 学习率
opt        = torch.optim.SGD(model.parameters(), lr = learn_rate)

2、编写训练函数

其核心思想是在每个训练迭代中,它从数据加载器中获取一个小批量的训练数据(包含图像和标签),将数据传递给模型进行前向传播,计算损失,然后通过反向传播更新模型的参数。最后,它记录并返回训练的准确率和损失。

简要概括:

  • 从数据加载器中获取小批量训练数据。
  • 将数据传递给模型进行前向传播,计算预测值。
  • 计算预测值与真实标签之间的损失。
  • 使用反向传播更新模型参数。
  • 记录并返回训练准确率和损失。
# 训练循环
def train(dataloader, model, loss_fn, optimizer):
    size = len(dataloader.dataset)  # 训练集的大小,一共60000张图片
    num_batches = len(dataloader)   # 批次数目,1875(60000/32)

    train_loss, train_acc = 0, 0  # 初始化训练损失和正确率
    
    for X, y in dataloader:  # 获取图片及其标签
        X, y = X.to(device), y.to(device)
        
        # 计算预测误差
        pred = model(X)          # 网络输出
        loss = loss_fn(pred, y)  # 计算网络输出和真实值之间的差距,targets为真实值,计算二者差值即为损失
        
        # 反向传播
        optimizer.zero_grad()  # grad属性归零
        loss.backward()        # 反向传播
        optimizer.step()       # 每一步自动更新
        
        # 记录acc与loss
        train_acc  += (pred.argmax(1) == y).type(torch.float).sum().item()
        train_loss += loss.item()
            
    train_acc  /= size
    train_loss /= num_batches

    return train_acc, train_loss

3、编写测试函数

下面这段代码主要是用于测试(评估)深度学习模型性能的函数。在每个测试迭代中,它从测试数据加载器中获取一个小批量的数据(包含图像和标签),通过模型进行前向传播,计算损失,然后记录测试准确率和损失。

简要概括:

  • 从测试数据加载器中获取小批量测试数据。
  • 将数据传递给模型进行前向传播,得到预测值。
  • 计算预测值与真实标签之间的损失。
  • 记录并返回测试准确率和损失。

测试函数和训练函数大致相同,但是由于不进行梯度下降对网络权重进行更新,所以不需要传入优化器

def test (dataloader, model, loss_fn):
    size        = len(dataloader.dataset)  # 测试集的大小,一共10000张图片
    num_batches = len(dataloader)          # 批次数目,313(10000/32=312.5,向上取整)
    test_loss, test_acc = 0, 0
    
    # 当不进行训练时,停止梯度更新,节省计算内存消耗
    with torch.no_grad():
        for imgs, target in dataloader:
            imgs, target = imgs.to(device), target.to(device)
            
            # 计算loss
            target_pred = model(imgs)
            loss        = loss_fn(target_pred, target)
            
            test_loss += loss.item()
            test_acc  += (target_pred.argmax(1) == target).type(torch.float).sum().item()

    test_acc  /= size
    test_loss /= num_batches

    return test_acc, test_loss

4、正式训练

主要是一个简单的训练循环,用于训练和评估深度学习模型多个epochs。在每个epoch中,它分别进行训练和测试,并记录训练集和测试集的准确率以及损失。最后,将每个epoch的结果打印出来。

epochs     = 20
train_loss = []
train_acc  = []
test_loss  = []
test_acc   = []

for epoch in range(epochs):
    model.train()
    epoch_train_acc, epoch_train_loss = train(train_dl, model, loss_fn, opt)
    
    model.eval()
    epoch_test_acc, epoch_test_loss = test(test_dl, model, loss_fn)
    
    train_acc.append(epoch_train_acc)
    train_loss.append(epoch_train_loss)
    test_acc.append(epochtest_acc)
    test_loss.append(epoch_test_loss)
    
    template = ('Epoch:{:2d}, Train_acc:{:.1f}%, Train_loss:{:.3f}, Test_acc:{:.1f}%,Test_loss:{:.3f}')
    print(template.format(epoch+1, epoch_train_acc*100, epoch_train_loss, epoch_test_acc*100, epoch_test_loss))
print('Done')

输出:

Epoch: 1, Train_acc:75.4%, Train_loss:0.517, Test_acc:72.3%,Test_loss:0.570
Epoch: 2, Train_acc:77.5%, Train_loss:0.491, Test_acc:74.4%,Test_loss:0.552
Epoch: 3, Train_acc:79.5%, Train_loss:0.469, Test_acc:74.4%,Test_loss:0.530
Epoch: 4, Train_acc:79.6%, Train_loss:0.454, Test_acc:75.1%,Test_loss:0.535
Epoch: 5, Train_acc:82.3%, Train_loss:0.430, Test_acc:75.5%,Test_loss:0.492
Epoch: 6, Train_acc:83.2%, Train_loss:0.414, Test_acc:76.7%,Test_loss:0.523
Epoch: 7, Train_acc:84.3%, Train_loss:0.400, Test_acc:76.5%,Test_loss:0.503
Epoch: 8, Train_acc:85.3%, Train_loss:0.386, Test_acc:77.9%,Test_loss:0.473
Epoch: 9, Train_acc:84.5%, Train_loss:0.379, Test_acc:80.0%,Test_loss:0.479
Epoch:10, Train_acc:86.2%, Train_loss:0.366, Test_acc:78.3%,Test_loss:0.467
Epoch:11, Train_acc:86.4%, Train_loss:0.354, Test_acc:81.1%,Test_loss:0.460
Epoch:12, Train_acc:88.1%, Train_loss:0.343, Test_acc:80.0%,Test_loss:0.478
Epoch:13, Train_acc:88.5%, Train_loss:0.338, Test_acc:80.2%,Test_loss:0.442
Epoch:14, Train_acc:88.4%, Train_loss:0.321, Test_acc:80.0%,Test_loss:0.435
Epoch:15, Train_acc:89.3%, Train_loss:0.315, Test_acc:82.5%,Test_loss:0.430
Epoch:16, Train_acc:89.7%, Train_loss:0.307, Test_acc:80.2%,Test_loss:0.431
Epoch:17, Train_acc:90.0%, Train_loss:0.295, Test_acc:82.3%,Test_loss:0.430
Epoch:18, Train_acc:91.4%, Train_loss:0.290, Test_acc:81.6%,Test_loss:0.466
Epoch:19, Train_acc:91.0%, Train_loss:0.283, Test_acc:82.3%,Test_loss:0.413
Epoch:20, Train_acc:91.6%, Train_loss:0.280, Test_acc:81.8%,Test_loss:0.422
Done

六、结果可视化

1、Loss和Accuracy图

import matplotlib.pyplot as plt
#隐藏警告
import warnings
warnings.filterwarnings("ignore")               #忽略警告信息
plt.rcParams['font.sans-serif']    = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False      # 用来正常显示负号
plt.rcParams['figure.dpi']         = 100        #分辨率

epochs_range = range(epochs)

plt.figure(figsize=(12, 3))
plt.subplot(1, 2, 1)

plt.plot(epochs_range, train_acc, label='Training Accuracy')
plt.plot(epochs_range, test_acc, label='Test Accuracy')
plt.legend(loc='lower right')
plt.title('Training and Validation Accuracy')

plt.subplot(1, 2, 2)
plt.plot(epochs_range, train_loss, label='Training Loss')
plt.plot(epochs_range, test_loss, label='Test Loss')
plt.legend(loc='upper right')
plt.title('Training and Validation Loss')
plt # 因为我是用的Jupyter,因此不用plt.show()

结果:
在这里插入图片描述

从图中我们可以看出训练和测试准确性都随着时间的推移而增加,训练和测试损失都随着时间的推移而减少,说明我们本周构建的模型表现良好,但可能存在轻微的过拟合以及噪声。

2、指定图片识别

from PIL import Image 

classes = list(total_data.class_to_idx)

def predict_one_image(image_path, model, transform, classes):
    
    test_img = Image.open(image_path).convert('RGB')
    # plt.imshow(test_img)  # 展示预测的图片

    test_img = transform(test_img)
    img = test_img.to(device).unsqueeze(0)
    
    model.eval()
    output = model(img)

    _,pred = torch.max(output,1)
    pred_class = classes[pred]
    print(f'预测结果是:{pred_class}')
    
    # 预测训练集中的某张照片
predict_one_image(image_path='E:\DeepLearning\Data_\Week4\Monkeypox\M06_02_07.jpg', 
                  model=model, 
                  transform=train_transforms, 
                  classes=classes)

输出:

预测结果是:Monkeypox

3、保存并加载模型

# 模型保存
PATH = 'E:\DeepLearning\model\Monkey_model.pth'  # 保存的参数文件名
torch.save(model.state_dict(), PATH)

# 将参数加载到model当中
model.load_state_dict(torch.load(PATH, map_location=device))

输出:

<All keys matched successfully>

七、拔高训练—设置动态学习率,提高测试集accuracy

1. 设置动态学习率

在深度神经网络中,学习率是最重要的超参数之一。如何调整学习率是“炼丹玄学”中最重要的药方之一。作为当前最为流行的深度学习框架,PyTorch已经为我们封装好了一些在训练过程中动态调整学习率的方法,下面就让我们来看一下。

torch.optim.lr_scheduler

torch.optim.lr_scheduler上,基于当前epoch的数值,为我们封装了几种相应的动态学习率调整方法,该部分的官方手册传送门——optim.lr_scheduler官方文档。需要注意的是学习率的调整需要应用在优化器参数更新之后,其应用的简要代码示例如下:

>>> optimizer = torch.optim.Adam(...) #选择一种优化器
>>> scheduler = torch.optim.lr_scheduler.... # 选择一种动态调整学习率的方法,可以是下面几种之一
>>> for epoch in range(100):
>>>     train(...)
>>>     validate(...)

>>>     optimizer.step()
>>>     scheduler.step() # 需要在优化器参数更新之后再动态调整学习率

然后我们再提高epoch的值来增加Accuracy
在这里插入图片描述
在这里插入图片描述
可以看到,我们设置了动态学习率,但是Accuracy非常低,这有可能与我们调整频率或者调整依据设置不正确有关,但由于笔者电脑实在太差了,新设备还未到,因此在此先搁置,等新设备到了以后再进行调整。

  • 19
    点赞
  • 25
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值