目录
1、安装Miniconda
Miniconda 是 Anaconda 的轻量级版本,它仅包含conda、Python 解释器和一些必备的软件工具,并没有像 Anaconda 那样预装 1500 多个库。这也说明,用户需要根据自身实际需求手动安装所需的包,给予了用户更大的自主控制权。
其中,conda是在Windows、macOS和Linux上运行的开源软件包管理系统和环境管理系统。conda可以快速安装、运行和更新软件包及其依赖项。
Miniconda的下载链接:Minicodna
进入网页后往下拉,就可以看到Miniconda的下载页面,选择对应版本的Miniconda下载,然后按要求安装。
若需要下载历史版本,可以从这个链接进去选择对应的版本。 历史版本
2、安装虚拟环境
为什么要创建虚拟环境?
虚拟环境是一个Python环境,其中安装的Python解释器、库和脚本与安装在其他虚拟环境中的那些是隔离的。这有利于开发者进行开发多个不同的项目时,使用不同的虚拟环境,每个虚拟环境可以使用自己的python解释器,以及第三方工具,而这些环境之间彼此相互不影响。
然而,Conda作为软件包管理器,可帮助用户创建虚拟环境,并查找、安装Python第三方库。仅需几个命令,即可设置一个完全独立的环境来运行不同版本的Python。以下为conda常用命令,均可在终端运行,其中虚拟环境的名字可以自定义。(windows系统下需要按键Ctrl+R,再输入cmd,点击确定,即可进入终端。)
conda --version #查看conda版本,可用于检查miniconda是否安装成功
conda env list #查看conda现有虚拟环境
conda create -n yolo11 python=3.10 #创建一个名字叫yolo11的环境,Python版本3.10
conda activate yolo11 #激活该虚拟环境yolo11
conda list #查看已安装的包
conda deactivate yolo11 #退出该虚拟环境yolo11
***(注意:虚拟环境不需要再使用时才删除,执行下列代码)***
conda remove -n yolo11 --all #删除虚拟环境yolo11(windows系统)
conda remove --name yolo11 --all #删除虚拟环境yolo11(linux系统)
3、全局镜像源配置
因为Python的包管理工具pip默认从国外网站下载第三方库,网络状况不稳定,容易出现下载速度比较慢或者下载失败的现象。为了加快pip下载Python包的下载速度,需要给pip配置国内的镜像源,因此可以确保从国内的镜像服务器上下载的包是最新版本,从而避免安装过时的包。
pip install --upgrade pip
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple
以下是国内常用镜像源,可根据你的需要,将上述代码中的网址,换成如下的网址。
清华:https://pypi.tuna.tsinghua.edu.cn/simple
豆瓣:http://pypi.douban.com/simple
阿里云:http://mirrors.aliyun.com/pypi/simple
中国科技大学:https://pypi.mirrors.ustc.edu.cn/simple
华中理工大学:http://pypi.hustunique.com
*注:安装项目的相关依赖,如果项目中有requirements.txt文件,则按照这个命令安装这个文件中的依赖包。
pip install -r requirements.txt
4、安装Pytorch
PyTorch是一个开源的机器学习框架,由Facebook的人工智能研究团队(FAIR)开发并维护。它基于Torch库构建,主要用于深度学习、计算机视觉、自然语言处理等领域的应用。PyTorch 以其灵活性、动态计算图和易用性而广受欢迎,尤其在学术界和工业界中被广泛使用。
nvidia-smi #查看电脑是否有GPU
若不小心安装了错误的pytorch版本,将导致项目无法正常运行,一定要注意!不同版本的pytorch、GPU之间的对应关系可参考这篇文章:
【Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令】_torch和cuda对应关系-CSDN博客
在知道自己的版本要求后,从以下链接,选择对应的命令在终端进行安装(注意这里需要科学上网): Pytorch
以下检查是否安装成功,在终端输入python,进入Python编译环境,输入以下命令,来检查Pytorch是否安装成功。若出现以下回复,则代表pytorch安装成功。
Python 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.__version__)
2.5.1+cu124
>>> quit()
5、安装YOLOv11
pip install ultralytics #先安装这个库,几乎包含yolov11的所需运行环境
git clone https://github.com/ultralytics/ultralytics.git #克隆yolov11源代码(科学上网)
*注1:
拉取yolov11代码时,git报错:The TLS connection was non-properly terminated.
如果遇到这个bug,需要在终端输入以下命令,它是用来清除Git配置中保存的全局HTTP代理和HTTPS代理设置,让 Git 恢复直连网络(不再通过代理服务器通信)。然后,到这里项目就完成环境配置,大功告成!
git config --global --unset http.proxy
git config --global --unset https.proxy
*注2:
(如果需要标注自己的数据集,则需要下载labelimg,否则可跳过)
pip install labelimg #下载数据集标注软件
labelimg #启动该程序
若labelimg出现闪退的现象,可能是python版本和labelimg不兼容,建议使用python=3.9及以上的虚拟环境
*注3:
运行失败可能是yolo11n.pt下载失败(点击下方图片中的蓝色链接),此时需要单独下载pt文件并上传到项目的同级目录内。
下载链接1(Ultralytics官网):Ultralytics YOLO11 - Ultralytics YOLO Docs
下载链接2(github官网,这里需要科学上网):ultralytics/ultralytics: Ultralytics YOLO11 🚀
*注4:
若是依赖的第三方库没安装上,则需要返回以上的步骤检查是否安装成功。
6、测试v11能否正常运行
方法1:在终端输入以下命令,需要在虚拟环境下运行。
yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'
方法2:执行python代码,需要在虚拟环境下运行,在README.md文件中也有介绍。
创建一个test.py文件,复制以下代码。
from ultralytics import YOLO
# 加载模型
model = YOLO("yolo11n.pt")
# 训练模型
train_results = model. Train(
data="coco8.yaml", # 数据集 YAML 路径
epochs=10, # 训练轮次
imgsz=640, # 训练图像尺寸
device="cpu", # 运行设备,例如 device=0 或 device=0,1,2,3 或 device=cpu)
# 评估模型在验证集上的性能
metrics = model.val()
# 在图像上执行对象检测
results = model("img.png")
results[0].show()
在终端运行命令(在文件的同级目录下,且开启虚拟环境):
python test.py
*注:若使用Pycharm来运行test.py,需要切换虚拟环境,可以在设置里修改。
点击:文件 --> 设置 --> 项目:代码 --> python解释器 -->(右侧设置小图标)
7、总结
以上是作者在运行YOLOv11项目,以及运行一些Python项目过程中,遇到常见问题的一些经验总结,如果有疑问的可在评论区留言。此外,大多数命令在linux和windows操作系统中均可正常运行,只有Miniconda和Pytorch对环境要求严格。如有不足请多包涵,欢迎各位大佬批评指正。