YOLOv11+Miniconda+Pytorch环境配置与安装,虚拟环境使用的常见问题总结

目录

1、安装Miniconda

2、安装虚拟环境

3、全局镜像源配置

4、安装Pytorch

5、安装YOLOv11

6、测试v11能否正常运行

7、总结

1、安装Miniconda

        Miniconda 是 Anaconda 的轻量级版本,它仅包含conda、Python 解释器和一些必备的软件工具,并没有像 Anaconda 那样预装 1500 多个库。这也说明,用户需要根据自身实际需求手动安装所需的包,给予了用户更大的自主控制权。

其中,conda是在Windows、macOS和Linux上运行的开源软件包管理系统和环境管理系统。conda可以快速安装、运行和更新软件包及其依赖项。

        Miniconda的下载链接:Minicodna 

        进入网页后往下拉,就可以看到Miniconda的下载页面,选择对应版本的Miniconda下载,然后按要求安装。 

        若需要下载历史版本,可以从这个链接进去选择对应的版本。 历史版本

2、安装虚拟环境

为什么要创建虚拟环境?

        虚拟环境是一个Python环境,其中安装的Python解释器、库和脚本与安装在其他虚拟环境中的那些是隔离的。这有利于开发者进行开发多个不同的项目时,使用不同的虚拟环境,每个虚拟环境可以使用自己的python解释器,以及第三方工具,而这些环境之间彼此相互不影响。

        然而,Conda作为软件包管理器,可帮助用户创建虚拟环境,并查找、安装Python第三方库。仅需几个命令,即可设置一个完全独立的环境来运行不同版本的Python。以下为conda常用命令,均可在终端运行,其中虚拟环境的名字可以自定义。(windows系统下需要按键Ctrl+R,再输入cmd,点击确定,即可进入终端。)

conda --version       #查看conda版本,可用于检查miniconda是否安装成功
conda env list           #查看conda现有虚拟环境
conda create -n yolo11 python=3.10       #创建一个名字叫yolo11的环境,Python版本3.10
conda activate yolo11             #激活该虚拟环境yolo11
conda list     #查看已安装的包
conda deactivate yolo11        #退出该虚拟环境yolo11
***(注意:虚拟环境不需要再使用时才删除,执行下列代码)***
conda remove -n yolo11  --all           #删除虚拟环境yolo11(windows系统)
conda remove --name yolo11 --all   #删除虚拟环境yolo11(linux系统) 

3、全局镜像源配置

        因为Python的包管理工具pip默认从国外网站下载第三方库,网络状况不稳定,容易出现下载速度比较慢或者下载失败的现象。为了加快pip下载Python包的下载速度,需要给pip配置国内的镜像源,因此可以确保从国内的镜像服务器上下载的包是最新版本,从而避免安装过时的包。

pip install --upgrade pip  
pip config set global.index-url https://pypi.tuna.tsinghua.edu.cn/simple

        以下是国内常用镜像源,可根据你的需要,将上述代码中的网址,换成如下的网址。

清华:https://pypi.tuna.tsinghua.edu.cn/simple

豆瓣:http://pypi.douban.com/simple

阿里云:http://mirrors.aliyun.com/pypi/simple

中国科技大学:https://pypi.mirrors.ustc.edu.cn/simple

华中理工大学:http://pypi.hustunique.com

        *注:安装项目的相关依赖,如果项目中有requirements.txt文件,则按照这个命令安装这个文件中的依赖包。

pip install -r requirements.txt  

4、安装Pytorch

       PyTorch是一个开源的机器学习框架,由Facebook的人工智能研究团队(FAIR)开发并维护。它基于Torch库构建,主要用于深度学习、计算机视觉、自然语言处理等领域的应用。PyTorch 以其灵活性、动态计算图和易用性而广受欢迎,尤其在学术界和工业界中被广泛使用。

nvidia-smi  #查看电脑是否有GPU

        若不小心安装了错误的pytorch版本,将导致项目无法正常运行,一定要注意!不同版本的pytorch、GPU之间的对应关系可参考这篇文章:

【Pytorch、torchvision、CUDA 各个版本对应关系以及安装指令】_torch和cuda对应关系-CSDN博客

        在知道自己的版本要求后,从以下链接,选择对应的命令在终端进行安装(注意这里需要科学上网): Pytorch

        以下检查是否安装成功,在终端输入python,进入Python编译环境,输入以下命令,来检查Pytorch是否安装成功。若出现以下回复,则代表pytorch安装成功。

Python 3.10.16 (main, Dec 11 2024, 16:24:50) [GCC 11.2.0] on linux
Type "help", "copyright", "credits" or "license" for more information.
>>> import torch
>>> print(torch.__version__)
2.5.1+cu124
>>> quit()

5、安装YOLOv11

pip install ultralytics       #先安装这个库,几乎包含yolov11的所需运行环境
git clone https://github.com/ultralytics/ultralytics.git     #克隆yolov11源代码(科学上网)

*注1:

        拉取yolov11代码时,git报错:The TLS connection was non-properly terminated.

        如果遇到这个bug,需要在终端输入以下命令,它是用来清除Git配置中保存的全局HTTP代理和HTTPS代理设置,让 Git 恢复直连网络(不再通过代理服务器通信)。然后,到这里项目就完成环境配置,大功告成!

git config --global --unset http.proxy
git config --global --unset https.proxy

*注2:

        (如果需要标注自己的数据集,则需要下载labelimg,否则可跳过)

pip install labelimg     #下载数据集标注软件
labelimg     #启动该程序

        若labelimg出现闪退的现象,可能是python版本和labelimg不兼容,建议使用python=3.9及以上的虚拟环境

*注3:

        运行失败可能是yolo11n.pt下载失败(点击下方图片中的蓝色链接),此时需要单独下载pt文件并上传到项目的同级目录内。

下载链接1(Ultralytics官网):Ultralytics YOLO11 - Ultralytics YOLO Docs

下载链接2(github官网,这里需要科学上网):ultralytics/ultralytics: Ultralytics YOLO11 🚀

*注4:

        若是依赖的第三方库没安装上,则需要返回以上的步骤检查是否安装成功。

6、测试v11能否正常运行

方法1:在终端输入以下命令,需要在虚拟环境下运行。

yolo predict model=yolo11n.pt source='https://ultralytics.com/images/bus.jpg'

方法2:执行python代码,需要在虚拟环境下运行,在README.md文件中也有介绍。

        创建一个test.py文件,复制以下代码。

from ultralytics import YOLO
# 加载模型
model = YOLO("yolo11n.pt")
# 训练模型
train_results = model. Train(
    data="coco8.yaml",  # 数据集 YAML 路径
    epochs=10,  # 训练轮次
    imgsz=640,  # 训练图像尺寸
    device="cpu",  # 运行设备,例如 device=0 或 device=0,1,2,3 或 device=cpu)
# 评估模型在验证集上的性能
metrics = model.val()
# 在图像上执行对象检测
results = model("img.png")
results[0].show()

        在终端运行命令(在文件的同级目录下,且开启虚拟环境):

python test.py

*注:若使用Pycharm来运行test.py,需要切换虚拟环境,可以在设置里修改。

        点击:文件 --> 设置 --> 项目:代码 --> python解释器 -->(右侧设置小图标)

7、总结

        以上是作者在运行YOLOv11项目,以及运行一些Python项目过程中,遇到常见问题的一些经验总结,如果有疑问的可在评论区留言。此外,大多数命令在linux和windows操作系统中均可正常运行,只有Miniconda和Pytorch对环境要求严格。如有不足请多包涵,欢迎各位大佬批评指正。

### 使用 Miniconda 配置 YOLOv7 环境 #### 创建虚拟环境 为了确保YOLOv7能够顺利运行,在Miniconda中创建一个新的Python虚拟环境是非常重要的。对于YOLOv7来说,推荐使用Python版本通常是3.8或更高版本。可以使用如下命令来创建名为`yolov7`的虚拟环境并指定Python版本: ```bash conda create -n yolov7 python=3.9 ``` 激活新创建的环境以便后续安装所需的依赖包[^2]。 #### 安装必要的软件包 一旦进入新的虚拟环境中,下一步就是安装YOLOv7及其配套工具所需要的各类库文件。这通常包括但不限于NumPy, Matplotlib等基础科学计算库以及OpenCV用于图像处理支持。特别是针对GPU加速的需求,还需要特别注意CUDA和cuDNN版本的选择以匹配本地硬件条件。例如,可以通过pip或者conda渠道安装OpenCV: ```bash pip install opencv-python ``` 对于希望利用NVIDIA显卡实现更快推理速度的情况,则需通过特定通道安装带有CUDA支持的PyTorch版本: ```bash conda install pytorch torchvision torchaudio pytorch-cuda=12.4 -c pytorch -c nvidia ``` 而对于那些不具备合适GPU设备或是偏好于仅依靠CPU执行运算的情形下,则可以选择不带任何特殊硬件优化选项的基础版PyTorch发行版。 #### 下载并设置YOLOv7项目源码 最后一步是从官方GitHub仓库克隆最新的YOLOv7代码到本地计算机上,并根据具体需求调整配置参数完成最终部署工作。确保所有路径都已正确设定好之后就可以开始训练模型或者是加载预训练权重来进行预测分析了。 ```bash git clone https://github.com/WongKinYiu/yolov7.git cd yolov7 ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值