yolov11配置环境(干货)(附带安装包)

一、准备工作

pycharm专业版在官网下载,找一个激活码,选择activation coda 填入即可。

安装深度学习环境

本次配置是:cuda11.8+cuDNN8.9.7+Anaconda3-2022.10-Windows-x86_64 +pytorch2.5.0

其中cuda、cudnn和pytorch有版本相互要求。

cuda11.8+cuDNN8.9.7+Anaconda3-2022.10-Windows-x86_64
通过百度网盘分享的文件:v
链接:https://pan.baidu.com/s/1lJFSRri8TjAgMySf_hl2Nw 
提取码:wot3 

cuDNN8.9.7使用方法:整体cudnn的安装过程是将右边cudnn文件夹下的文件,复制到左边的cuda目录下。



pytorch2.5.0安装(PyTorch官网)
pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

conda使用方法:

创建虚拟环境

conda create -n yolov11 python==3.9

选择虚拟环境

conda activate yolov11

配置Ultralytics(yolov11)环境

pip install ultralytics

(注意这里自动配置的cpu版本的torch)

如需更换请

pip uninstall torch torchvision

pip3 install torch torchvision torchaudio --index-url https://download.pytorch.org/whl/cu118

二、环境选择

pycharm中右下角选择

(这是我已经选择好的,你们不叫这个名但是在这个位置)

点开选择add new interpret

再点add local interpret

选择conda environment

之后选择conda.bat文件

最后就可以在 use existing environment 选择之前创建好的yolov11环境了。

三、之后会更新训练自己的数据集,和一些改进方法,需要的扣我,全开源。

YOLOv8 是 Ultralytics 公司推出的一个先进的目标检测模型系列,PyCharm 则是一个功能强大的 Python 集成开发环境 (IDE)。以下是关于如何在 PyCharm 中配置 YOLOv8 的步骤: ### 步骤一:安装必要的依赖项 首先需要确保系统中有适当的版本的 Python 环境,并通过 `pip` 安装相关的库文件。 ```bash pip install ultralytics torch torchvision matplotlib numpy opencv-python scikit-image ``` 以上命令会为你下载并安装所有运行 YOLOv8 所需的基本包。 ### 步骤二:创建新的项目于 PyCharm 内部 1. **打开 PyCharm** 并选择“New Project”选项。 2. 设置项目的名称及存储位置,同时确认所使用的解释器是否正确设置(推荐使用虚拟环境来隔离不同项目之间的依赖冲突)。 ### 步骤三:导入数据集至工作目录 将准备好的训练图片及其标签复制粘贴到对应的工作路径下,默认结构包括 `images/train`, `labels/train`, `images/val`, 和 `labels/val` 文件夹用于存放图像与标注信息。 ### 步骤四:编写脚本加载预训练权重或自定义网络架构 可以参考官方文档提供的样例代码片段初始化模型实例: ```python from ultralytics import YOLO # 加载已有权重或者从头开始构建新模型 model = YOLO('yolov8n.pt') # 使用小规模基础模型作为起点 # 训练过程启动指令 results = model.train(data='coco.yaml', epochs=50) ``` 这里的 `'coco.yaml'` 应替换为自己实际的数据描述文件名,包含类别映射、图片大小等元数据内容;而 epoch 数量可以根据硬件资源调整适当增减。 完成上述操作之后即可直接点击运行按钮查看效果啦!
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值