最新综述:基于深度学习方式的单目物体姿态估计与跟踪

本文全面回顾了深度学习在单目物体姿态检测和跟踪领域的最新进展,重点关注实例级和类别级任务,涵盖了基于RGB和RGBD数据的方法。通过对各种方法的分类和性能分析,探讨了当前挑战与未来研究方向,如遮挡处理、鲁棒性增强和轻量化网络设计等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

原文:Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview

作者:中国人民大学、清华大学、北京交通大学

摘要

目标姿态检测与跟踪在自动驾驶、机器人技术、增强现实等领域有着广泛的应用,近年来受到越来越多的关注。在目标姿态检测和跟踪的方法中,深度学习是最有前途的一种,其性能优于其他方法。然而,对于基于深度学习方法的最新发展却缺乏调查研究。因此,本文对深度学习技术路线中目标姿态检测与跟踪的最新进展进行了综述。为了更深入的介绍,本文的研究范围仅限于以单目RGB/RGBD数据为输入的方法,包括实例级单目目标姿态检测、类别级单目目标姿态检测和单目目标姿态跟踪三类主要任务。论文详细介绍了检测和跟踪的度量、数据集和方法。文中还介绍了几种公开数据集上的最新方法的比较结果,以及有见地的观察结果和启发性的未来研究方向。

数据集介绍

实例级单目目标姿态估计与跟踪数据集:主要包括经典的Linemod、YCB等数据集~

类别级单目目标姿态估计与跟踪

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值