原文:Deep Learning on Monocular Object Pose Detection and Tracking: A Comprehensive Overview
作者:中国人民大学、清华大学、北京交通大学
摘要
目标姿态检测与跟踪在自动驾驶、机器人技术、增强现实等领域有着广泛的应用,近年来受到越来越多的关注。在目标姿态检测和跟踪的方法中,深度学习是最有前途的一种,其性能优于其他方法。然而,对于基于深度学习方法的最新发展却缺乏调查研究。因此,本文对深度学习技术路线中目标姿态检测与跟踪的最新进展进行了综述。为了更深入的介绍,本文的研究范围仅限于以单目RGB/RGBD数据为输入的方法,包括实例级单目目标姿态检测、类别级单目目标姿态检测和单目目标姿态跟踪三类主要任务。论文详细介绍了检测和跟踪的度量、数据集和方法。文中还介绍了几种公开数据集上的最新方法的比较结果,以及有见地的观察结果和启发性的未来研究方向。
数据集介绍
实例级单目目标姿态估计与跟踪数据集:主要包括经典的Linemod、YCB等数据集~
类别级单目目标姿态估计与跟踪