Gaussian Splatting杀疯了!最新开源的超强3D场景编辑!

0. 笔者个人体会

3D场景编辑通过文本直接修改场景建模,广泛用于VR/AR、3D建图、游戏建模等应用。但传统的3D编辑方法依赖网格和点云,很难描绘复杂场景,NeRF方案渲染质量高但是速度很慢。

最近3D Gaussian Splatting可谓大火,极大提高了NeRF的渲染速度,目前还在不停地刷新各大任务。感兴趣的读者可以抓紧探索3D Gaussian Splatting在其他CV任务上的应用,目前仍有很大研究空间。

下面一起来阅读一下最近3D Gaussian Splatting在3D编辑上的工作GaussianEditor,文末附论文和代码链接~

这里我们成立了一个NeRF交流群,感兴趣的小伙伴可以进群一起交流。

a57b9866f9682833462a7ca87efafcd5.jpeg

1. 效果展示

GaussianEditor侧重交互式、通用、高分辨率、快速的3D编辑,在A6000 GPU上只需要2 - 7分钟和10 - 20GB的GPU内存。注意标题提到的"可控",表示GaussianEditor只修改所需的部分,例如第一行的"使草着火",场景中的其他物体如凳子、树不受任何影响。

7cc557318a88219f7e9972945610dc80.png

看一下WebGL上的可视化结果,几乎已经是照片级渲染了,而且整个场景的运行帧率非常快!看来游戏建模师又要睡不着觉了~

32d686ade51a1f798ae19eb60dfd0d3a.png

代码已经开源了,也开放了WebGL可视化界面,感兴趣的读者可以测试一下。

2. 具体原理是什么?

首先简单介绍一下3D Gaussian Splatting(GS),是ACM Transactions on Graphics 2023会议最佳论文。主要思想是将NeRF场景建模为3D高斯,这项工作很大程度上影响了NeRF的走向。最大的亮点是能够在重建高保真NeRF的同时接入传统光栅化,极大加快了渲染速度!

想进一步了解的读者可以关注它们的官网https://repo-sam.inria.fr/fungraph/3d-gaussian-splatting。

GaussianEditor就是基于GS设计的,首先设计高斯语义跟踪来增强编辑的精度和控制,这个跟踪策略在整个训练过程中用来跟踪编辑目标。然后提出分层高斯分布( HGS ),以在2D扩散模型的随机生成指导下实现稳定和精细的结果。还为GS设计了一种3D修复算法,用来快速移除和添加物体。

3. 和其他SOTA方法对比如何?

看一下和其他方案的对比效果,GaussianEditor最大的亮点是能够在编辑目标的基础上不影响背景(对比Instruct-N2N)。

b06f3df27715b3a62d642ae78162221c.png

定量比较,GaussianEditor-iN2N在用户学习评价和CLIP方向相似度上均提升明显。

26e71ec3f4c04934e05632e4a3fe3ddf.png

对更多实验结果和文章细节感兴趣的读者,可以阅读一下论文原文~

4. 论文信息

标题:GaussianEditor: Swift and Controllable 3D Editing with Gaussian Splatting

作者:Yiwen Chen, Zilong Chen, Chi Zhang, Feng Wang, Xiaofeng Yang, Yikai Wang, Zhongang Cai, Lei Yang, Huaping Liu, Guosheng Lin

机构:南洋理工大学、清华大学、SenseTime

原文链接:https://arxiv.org/abs/2311.14521

代码链接:https://github.com/buaacyw/GaussianEditor

官方主页:https://buaacyw.github.io/gaussian-editor/

我是泡椒味的口香糖,专注于CV和SLAM领域。这里有最新的前沿理论,有大佬答疑解惑,还有全网最全的免费视频课程!如果你也是一个人在孤独地摸索学习,那就欢迎扫码加入我们,一起交流学习~

9d8fab119b8f5c5f9f878ff114089f73.png
下载1

在公众号「3D视觉工坊」后台,回复 「3d001」,即可获取工业3D视觉(结构光、缺陷检测、三维点云)、SLAM(视觉/激光SLAM)、自动驾驶、三维重建、事件相机、无人机等近千余篇最新顶会论文。

下载2

在公众号「3D视觉工坊」后台,回复「3d002」,即可获取巴塞罗那自治大学3D视觉课件、慕尼黑工业大学3D视觉和视觉导航精品课件。

下载3

在公众号「3D视觉工坊」后台,回复「3d003」,即可获取相机标定、结构光、三维重建、激光-视觉-IMU-GPS多模态融合SLAM、LOAM、ORB-SLAM3,深度估计、模型部署、3D目标检测等学习课件。注:非完整版。

高效学习3D视觉三部曲

第一步 加入行业交流群,保持技术的先进性

目前工坊已经建立了3D视觉方向多个社群,包括SLAM工业3D视觉自动驾驶三维重建无人机方向,细分群包括:

[工业3D视觉]相机标定、立体匹配、三维点云、结构光(面/线/散斑)、机械臂抓取(2D/3D)、2D缺陷检测、3D缺陷检测、6D位姿估计、相位偏折术、Halcon、光场重建、摄影测量、阵列相机、偏振三维测量、光度立体视觉、激光雷达、综合群等。

[SLAM]视觉SLAM、激光SLAM、ORB-SLAM、Vins-Fusion、LOAM/LeGo-LOAM、cartographer、VIO、语义SLAM、滤波算法、多传感器融合、多传感器标定、MSCKF、动态SLAM、MOT SLAM、NeRF SLAM、FAST-LIO、LVI-SAM、LIO-SAM、事件相机/GPS/RTK/UWB/IMU/码盘/TOF(iToF/dToF)/激光雷达/气压计/毫米波雷达/RGB-D相机/超声波等、机器人导航、综合群等。

[自动驾驶]深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪、综合群等。

[三维重建]NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

[无人机]四旋翼建模、无人机飞控等

除了这些,还有求职、硬件选型、视觉产品落地、最新论文、3D视觉最新产品、3D视觉行业新闻等交流群

大家可以添加小助理微信: dddvisiona,备注:加群+方向+学校|公司, 小助理会拉你入群。

a37af8ec2be5602c00a19b8a5519ab6c.jpeg
添加小助理微信:dddvisiona,加群+方向+学校|公司,拉你入群

第二步 3D视觉从入门到精通系统课程

目前3D视觉工坊平台针对各个方向的知识点,打造了多门从理论到实战课程,包括:

  • 论文写作课程:三维科研

  • 基础入门课程:C++、Linux、相机标定、ROS2、dToF

  • 工业3D视觉课程:面结构光、线结构光、散斑结构光、相位偏折术、机械臂抓取、三维点云(PCL和Open3D)、缺陷检测

  • SLAM课程:LeGo-LOAM、LOAM、LVI-SAM(激光-视觉-IMU-GPS融合SLAM)、Vins-Fusion、ORB-SLAM3、室内/室外激光SLAM等

  • 机器人路径规划与控制课程:机器人规控入门与实践

  • 三维重建课程:comlap、MVSNet等

  • 自动驾驶课程:多传感器标定、视觉Transformer、单目深度估计、3D目标检测、模型部署等。

注:工坊现面向平台所有读者招募主讲老师,奖励丰厚,具体详情可以可以参考:3D视觉主讲老师招募

357286581ad22a684c6432309f32ee42.png
3D视觉精品课程,包括工业3D视觉、SLAM、自动驾驶、三维重建、无人机等,地址:www.3dcver.com 贴心小管家微信:cv3d007

第三步 加入知识星球,问题及时得到解答

「3D视觉从入门到精通」知识星球,依托于微信公众号「3D视觉工坊」、「计算机视觉工坊」、「3DCV」平台,星球内除了包含3D视觉独家秘制视频课程(近20门,包括三维重建三维点云手眼标定相机标定3D目标检测深度估计ORB-SLAM3Vins-Fusion激光-视觉-IMU-GPS融合机械臂抓取等)、3D视觉项目对接3D视觉学习路线最新论文&代码分享入门书籍推荐源码汇总最新行业模组分享编程基础&作业求职招聘&面经&面试题等,更有各类大厂的算法工程人员进行技术指导。目前星球铁杆粉丝已近6000+,让我们一起探索更其妙的3D视觉技术、为祖国的创新发展贡献自己的一份力。知识星球入口:3D视觉从入门到精通

eb4d79b7fb2233dbde41d6731afaa940.png
### 实现 3D Gaussian Splatting 的准备工作 为了在 Ubuntu 上成功实现 3D Gaussian Splatting (3DGS),需要确保操作系统环境已经准备好并安装必要的依赖项。对于 Ubuntu 22.04 版本,建议按照以下指南操作。 #### 安装基础软件包 首先更新系统的软件源列表,并安装一些基本工具和库: ```bash sudo apt-get update && sudo apt-get upgrade -y sudo apt-get install build-essential cmake git wget unzip pkg-config libopencv-dev python3-pip -y ``` #### 设置 Python 和 PyTorch 环境 由于 3D Gaussian Splatting 需要使用到 PyTorch 进行模型训练与推理,因此需先确认 CUDA 版本再选择合适的 PyTorch 版本来安装[^1]。可以通过命令 `nvcc --version` 来查看当前 GPU 所支持的 CUDA 版本号。接着通过 pip 工具来安装对应版本的 PyTorch 及其扩展组件 torchvision: ```bash pip3 install torch torchvision torchaudio --extra-index-url https://download.pytorch.org/whl/cu117 ``` 这里假设使用的 CUDA 是 11.7 版本;如果不是,则应调整 URL 中 cu 后面的部分以匹配实际的 CUDA 版本。 #### 获取项目代码 从 GitHub 下载官方提供的 3D Gaussian Splatting 源码仓库: ```bash git clone https://github.com/graphdeco-inria/gaussian-splatting.git cd gaussian-splatting ``` #### 编译 C++ 组件 进入克隆下来的目录后,编译所需的 C++ 插件模块: ```bash mkdir build && cd build cmake .. make -j$(nproc) ``` 这一步骤会生成执行文件和其他必需的支持文件。 #### 准备数据集 如果打算测试自采集的数据集,在此之前还需要做额外的工作来处理这些原始图像序列或者点云数据,使其能够被算法所接受。具体方法可以参见相关文档说明[^3]。 #### 测试运行 最后,尝试启动示例程序验证整个流程是否正常工作: ```bash python3 main.py --config configs/example.yaml ``` 以上就是在 Ubuntu 平台上部署 3D Gaussian Splatting 技术的大致过程概述。需要注意的是,不同硬件配置可能会遇到不同的兼容性和性能优化问题,所以在实践中可能还需进一步调试参数设置。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值