最新工业基于点云的3D缺陷检测和分类综述

本文深入探讨了基于深度学习的3D点云方法在工业缺陷检测和分类中的进展,分析了投影、体积和直接点云处理方法的优缺点,提出稀疏卷积和点云网络作为有前景的技术。文章强调了数据集和评估指标的重要性,同时指出实例分割和数据不足是当前挑战,呼吁更多的工业环境数据集以促进方法的改进。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

点击下方卡片,关注「3D视觉工坊」公众号

选择星标,干货第一时间送达

来源:3D视觉工坊

添加小助理:dddvision,备注:点云检测,拉你入群。文末附行业细分群

论文题目:ADVANCEMENTS IN POINT CLOUD-BASED 3D DEFECT DETECTION AND CLASSIFICATION FOR INDUSTRIAL SYSTEMS: A COMPREHENSIVE SURVEY

作者:Anju Rani, Daniel Ortiz-Arroyo等

作者机构:Department of Energy, Aalborg University

论文链接:https://arxiv.org/pdf/2402.12923.pdf

近年来,3D点云在各个领域的应用日益广泛,尤其在计算机视觉、状态监测、虚拟现实、机器人技术和自动驾驶方面。深度学习已经被证明是利用3D点云解决2D视觉挑战的有效方法。然而,将深度神经网络应用于处理3D点云也面临着挑战。为了解决这些挑战ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

3D视觉工坊

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值