ICRA和IROS为什么只是B和C?

点击下方卡片,关注「3DCV」公众号
选择星标,干货第一时间送达

点击加入「3DCV」技术交流群

作者:多崎作 | 编辑:3DCV
链接:https://www.zhihu.com/question/269663120
添加微信:cv3d008,备注:论文辅导,拉你入群。文末附行业细分群

我身边学长,一年7篇CVPR,4篇ECCV和5篇ICCV,真的太容易发了,只要你能想到不同的鸟屎配方。

这个评比,跟英联邦大学世界排名一样,水漫金山

2024QS排名
墨尔本大学比加州理工排名还高
你相信吗?

你拿CVPR去跟ICRA比CV

=墨尔本大学去跟Caltech比法律

不是搞笑吗?

就问一句致命的问题:

高贵的CCF A会的机器人可以叠衣服,端茶倒水了,还是可以像波士顿动力这样跑酷了?

还是就学CVPR,AAAI这样,天天刷imageNet这样的八股文?

客观总结:

ICRA的CV= MIT的音乐专业 CVPR的Robotics=茱莉亚音乐学院的数学

做机器人控制和系统的可以靠一篇所谓的CCF C的IROS进DeepMind,各位有多少篇CCF A连Meta和亚马逊都进不了呢??

人家的IROS:6个月研究从力学计算,经历系统平衡不稳定性的崩溃,6个月年做关节机械设计,经历过各种公差不配合,自由度冗余,设计想法太天真,一改二改,2年电路控制和设计,各种信号和线路出问题,一条线一条线debug,6个月3D制造加工,过材料疲劳的崩溃,材料成型的裂痕,6个月搭建ROS通讯,编译C++各种问题,往上都找不到解决方案,moveit几千个底层编译和config文件夹一个一个找,一个一个client的msg核对,10个月仿真器搭建…….,物理环境搭建….,6个月做Sim2real转换,发现方针跟现实差距巨大,各大paper里面的模型都是过于理想,前人没碰是因为真的巨难,后期算法搭建,更复杂,感慨波士顿动力的天下无敌,一步步测试debug,全都是难关,然后历经9981难投了IROS paper,然后开心死了,然后不忘夸赞一下还是你们CS系的强啊……

你的CVPR:网上20分钟下载,公开数据集,师兄师姐导师给你找好benchmark,10分钟下载Github代码跑跑baseline,2周读下文献学习人家如何魔改网络,添加Tricks,然后任务巨简单,“图像识别or分割”,在你的特定的context下,又又又改进了0.1%(没有改进只是trick不够多),然后3周搭建算法,3周跑跑benchmark,然后4周开始写paper,然后2周完善补充benchmark,2周编故事,然后2周时间强行数学证明下,总共耗时5月,投了,然后发现你朋友3月就一篇,感叹一句好卷好卷好卷,然后IROS好弱好弱好弱……ccf c的会议,好水好水好水….

b5b758a92a75a4c9a4872f4dd7488f6c.jpeg

本文对,CV,Robotics,生化环材,医学的水准进行综合比较。

最强梯队

CV:Nature/ Science封面 (全年3篇)
Robotics:Science/Nature 正刊(2篇)
生化环材医:科学突破奖/斯拉克奖/沃夫奖/未来科学 (全年25人获)
对应学术职位:top 20 university 院长
对应工业界:OpenAI/DeepMind/波士顿动力/达芬奇机器人/辉瑞/Moderna

第二梯队

CV:Nature / Science 正刊 (全年10篇)
Robotics:Science Robotics / Nature machine intelligence (control track 全年10篇)
生化环材医:麦克阿瑟奖/美国科学院奖 (全年300人)
对应学术界职位:C9 院士

第三梯队

CV:Nature Machine Intelligence/ ICML ICLR NeurIPS best paper (全年200篇)
Robotics:IJRR/TRO/ ICRA best paper/ RSS (全年150篇)
生化环材:Nature Science Cell 封面 (全年150篇)
医学:3 篇 Nature Science,柳叶刀,NEJ 封面 (全年200篇)
对应职位:C9的首席教授

第四梯队

CV:ICML ICLR NeurIPS oral (300篇)
Robotics:CoRL oral (全年40篇)
生化环材:Nature Science 正刊 (全年3000篇)
医学:3篇 Nature 柳叶刀 新英格兰杂志 (全年3000篇)
对应职位:C9 正教授(杰青)

第五梯队

CV:Nature Communications/CVPR ICCV oral paper/ ICML ICLR NeurIPS poster (全年800篇左右)
Robotics:CoRL posters (全年100篇)
生化环材:Cell, Joule (全年800篇)
医学:Nature 柳叶刀 新英格兰杂志(全年3000篇)
对应职位:中上 985 正教授

第六梯队

CV:TPAMI/CVPR/ICCV/ACL/MIA (全年4000篇)
Robotics:ICRA/RAL/Soft Robotics (全年2000篇)
生化环材:Nature Communications/ Advanced Materials/ Cell Research/ Immunity/
医学:JAMA/ BMJ/ Nature Medicine/ Annals of Oncology/Nature Review Cardiology (全年1000篇)

第七梯队

CV:ECCV/AAMAS/MICCAI (全年3000篇)
Robotics:IROS/Frontiers AI robotics/ Robot Soft/JFR(全年1500篇)
生化环材:Nano energy/matter/nature microbiology  (全年800篇)
医学:CANCER CELL/ NEURON/GUT/ NEURON (全年2000篇)
对应职位:985优秀副教授

再仔细讨论一下cv和robotics 领域,各大会议 2023 发文量

CV领域:

NeurIPS: 3218I

CML: 1824I

CLR: 1575

CVPR: 2359

ECCV: 1629

机器人领域:

RSS: 103 (极低)

CoRL: 130 (极低)

ICRA: 1345

IROS: 1196

最重要的分析来了 !

举个例子,一项完备的现代科研任务,我们可以分为5个最关键的过程:

  1. 数据采集系统的搭建(难度15星,耗时10星)占工作量 20% (肿瘤仪器)

  2. 数据的采集(难度2星,耗时8星)占工作量 10% (肿瘤图像)

  3. 识别算法的建立(难度5星,耗时2星)占工作量 10% (cv识别算法)

  4. 控制算法的建立(难度20星,耗时10星)占工作量40% (机器人contro 手术切除算法)

  5. 控制系统的搭建(难度15星,耗时20星)占工作量20% (机器人手术的器材搭建)

CV领域为啥有这么庞大的发文量,因为他们只管10%的工作量,

1)数据系统搭建不用管

2)海量数据采集不用管

3)最最最关键的复杂的控制”不用管

4)控制系统搭建不用管

比如识别肿瘤,cv肿瘤数据是已经拿到了,识别了肿瘤,cv的工作就结束了,就结束了,就结束了,就结束了,就结束了,就结束了,就结束了,就结束了,就结束了,就结束了,就结束了,就结束了?就很离谱,这就结束了????????

所以机器人的门槛远远高于cv,你觉得你算法创新,你为啥老是在公开数据集+最简单的任务上,跑几行python呢?你试试找个强化学习大牛,来控制下机器人倒水,拖地,分分钟算法 divergent, 系统 crash。

大部分CV 领域的:花里胡哨的novel算法+最最最简单的任务。

自诩算法创新,没有意识到,这些创新建立在,你任务太简单的基础上

即使cv界大牛,包括李飞飞组,包括sergey levine,无一例外的,全都是最简单的机器人任务,抓+放 (pick-place),任务极其简单,然后弄一大堆花里胡哨的算法,刷benchmark,然后投每年上万篇paper接受的会议,然后觉得自己ccf a高级了。。。

当然,AI 界也有良心的,没有为了水novelty而找个最最最简单任务的,比如deepmind,人家找的是蛋白质折叠任务,所以人家可以发nature science。

因此做个综合benchmark:

CVPR = 最简单任务(1星)* novel算法(4星)=4星

ICML = 最简单任务(1星)* novel算法(4星)* 严谨数学证明(3星) = 12 星

ICLR = 普通任务(2星) * 十分novel算法(5星)= 10 星

NeurIPS = 最简单的任务(1星) * 魔改网络算法 (4星)=4 星

RSS = 复杂任务(4星)* 复杂且novel算法 (4星)= 16星

CoRL = 复杂任务 (3星) * novel算法 (3星)= 9星

ICRA = 复杂任务(3星) * 相对novel算法 (2星) = 6 星

IROS = 普通任务(2星)* 相对novel算法 (2星)= 4 星

再次强调,任务本身难度,是衡量一个研究本身水准的最关键因素之一,抛开任务本身谈novelty,没有意义,没有任何意义。

注意,这里的Robotics指非CV类track的paper,不要说CVPR转投ICRA。

你CMU的CS转投哈佛还能中呢,你去跟哈佛比CS,你先说哈佛整体不如CMU?

你伦敦艺术学院,去投MIT的art也能中呢,你想说MIT不如伦艺, 所以学CV的人去投robotics的CV track=申请清华的新闻专业,哈佛的计算机,MIT的艺术管理。

有人私信让我补充:Medical Imaging和无人机水准,到底处于什么位置。

医学图像:

这个领域是水paper大户,身边朋友一年2篇NeurIPS,CVPR的大有人在,对比传统CV,可能要自降一级,CVPR的医学图像,水准远远低于robotics,大概IROS的水准。

无人机/自动驾驶/通讯

这个领域也非常容易产paper,得益于无人机本身考虑到运动复杂度非常低,因此可以近似看成一个点的运动,而且无人机本身任务相对机器人简单(主要是导航规划),可以套各种数学模型(因为简单所以好建模),因此无人机发CoRL大概也差不多机器人本身IROS的水准。

通讯就不说了,三个月一篇,是常事,水paper巨户。

最后回答几个大家最关注的问题

  1. 为什么ICRA和IROS是B和C?

计算机类会议排名:ICRA和IROS是B和C
艺术类高校排名:清华上交的也是B和C

很多人考不上央美,中国美术学院,甚至连第二流的美术院校都考不上,就转投了清华,同济,上交,重庆大学等985的艺术院校。难道这能证明央美比清华牛皮?

你来robotics投,你连机器人都没有,你ROS也不会用,去比CV刷imageNet,投ICRA,你咋不去MIT学厨师呢?

  1. 为什么RAL的impact factor才5,很多生化环材医都是30多分?

数学顶刊:Annals of Mathematics (5)
自动化控制顶刊:Automatica(6.5)
理论物理顶刊:PRL(9.6)
机器人顶刊:TRO (7.8)
医学顶刊:Lancet(168)
生物顶刊:Cell (66)
材料顶刊:NRM (76)
环境顶刊:NREE(42)
化学顶刊:CR(62)

基本上有个规律,领域的顶刊影响因子越大,该领域的论文就越容易水

本文仅做学术分享,如有侵权,请联系删文。

3D视觉精品课程:
3dcver.com

3DGS、NeRF、结构光、相位偏折术、机械臂抓取、点云实战、Open3D、缺陷检测、BEV感知、Occupancy、Transformer、模型部署、3D目标检测、深度估计、多传感器标定、规划与控制、无人机仿真、三维视觉C++、三维视觉python、dToF、相机标定、ROS2、机器人控制规划、LeGo-LAOM、多模态融合SLAM、LOAM-SLAM、室内室外SLAM、VINS-Fusion、ORB-SLAM3、MVSNet三维重建、colmap、线面结构光、硬件结构光扫描仪。

02e835952d7e25661ff7a7798a2f6ce4.png
▲长按扫码学习3D视觉精品课程

3D视觉学习圈子

3D视觉从入门到精通知识星球、国内成立最早、6000+成员交流学习。包括:星球视频课程近20门(价值超6000)项目对接3D视觉学习路线总结最新顶会论文&代码3D视觉行业最新模组3D视觉优质源码汇总书籍推荐编程基础&学习工具实战项目&作业求职招聘&面经&面试题等等。欢迎加入3D视觉从入门到精通知识星球,一起学习进步。

343c6ac8d9e13900f44c9ebf10e3ef21.png
▲长按扫码加入星球

3D视觉交流群

目前工坊已经建立了3D视觉方向多个社群,包括SLAM工业3D视觉自动驾驶三维重建无人机等方向,细分群包括:

工业3D视觉:相机标定、立体匹配、三维点云、结构光、机械臂抓取、缺陷检测、6D位姿估计、相位偏折术、Halcon、摄影测量、阵列相机、光度立体视觉等。

SLAM:视觉SLAM、激光SLAM、语义SLAM、滤波算法、多传感器融合、多传感器标定、动态SLAM、MOT SLAM、NeRF SLAM、机器人导航等。

自动驾驶:深度估计、Transformer、毫米波|激光雷达|视觉摄像头传感器、多传感器标定、多传感器融合、自动驾驶综合群等、3D目标检测、路径规划、轨迹预测、3D点云分割、模型部署、车道线检测、Occupancy、目标跟踪等。

三维重建:3DGS、NeRF、多视图几何、OpenMVS、MVSNet、colmap、纹理贴图等

无人机:四旋翼建模、无人机飞控等

除了这些,还有求职硬件选型视觉产品落地最新论文3D视觉最新产品3D视觉行业新闻等交流群

添加小助理: dddvision,备注:研究方向+学校/公司+昵称(如3D点云+清华+小草莓), 拉你入群。

a7f66db674f00a3af2bc46a0469a95a5.png
▲长按扫码添加助理

欢迎点个在看,你最好看!

<think>嗯,用户想了解具身智能人形机器人的技术及实现原理,并寻找相关的学习资源。首先,我需要明确这两个概念的具体含义。具身智能(Embodied Intelligence)强调智能体通过身体与环境的互动来学习适应,而人形机器人则是具备人类形态的机器人,涉及机械、电子、控制等多个领域。 接下来,用户需要学习路径,包括基础理论、实现原理、软硬件技术,以及文档视频教程。我应该从基础理论开始,比如控制理论、机器学习、认知科学等,这些都是具身智能的基石。然后转向人形机器人的实现原理,包括运动控制、传感器、驱动系统等。 软硬件技术方面,可能需要介绍ROS(机器人操作系统)、常用的仿真工具如Gazebo,以及硬件平台如波士顿动力的Atlas。此外,用户可能需要具体的项目案例实操资源,比如GitHub上的开源项目或实战书籍。 关于学习资源,用户提到了书籍、文档视频教程。需要推荐经典教材,如《Probabilistic Robotics》《Modern Robotics》,以及在线课程,可能包括Coursera或edX的相关课程。同时,引用用户提供的参考资料,虽然他们提到的是大模型的学习资源,但可以类比推荐系统性的学习路径,确保资源全面。 还要考虑用户可能的学习阶段,从基础到进阶,逐步深入。可能需要分阶段推荐,比如先打好数学编程基础,再学习机器人学理论,最后进行项目实践。此外,用户可能对实际应用行业趋势感兴趣,可以加入相关会议论文推荐,如ICRAIROS等。 最后,确保回答结构清晰,分点列出,涵盖理论、技术、资源,并自然地融入引用。检查是否有遗漏的重要知识点,比如传感器融合、运动规划算法等,确保推荐资源覆盖这些内容。同时,注意用户可能需要中英文资源,所以兼顾书籍在线课程的中文资料,比如国内大学的公开课或翻译版教材。</think>### 具身智能与人形机器人学习路径指南 #### 一、基础理论与核心技术 1. **具身智能理论** - 核心思想:智能体通过身体与环境的物理交互实现认知学习[^1] - 必学内容: - 控制理论:$H_{\infty}$鲁棒控制、$PID$控制器设计 - 感知-动作循环:$s_{t+1} = f(s_t, a_t)$ 状态转移方程 - 强化学习框架:$Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'}Q(s',a') - Q(s,a)]$ 2. **人形机器人技术栈** - 运动控制:基于$ZMP$(零力矩点)的步态规划 - 传感器融合:IMU+视觉的$SLAM$算法($\text{Simultaneous Localization and Mapping}$) - 驱动系统:谐波减速器动力学模型 $\tau = J\ddot{\theta} + B\dot{\theta}$ #### 二、系统化学习路径 1. **数学基础** - 线性代数:矩阵运算、特征值分解 - 微分几何:李群与李代数 $\mathfrak{se}(3)$ - 最优控制:Hamilton-Jacobi-Bellman方程 2. **核心课程体系** ```mermaid graph LR A[机器人学基础] --> B[运动学与动力学] A --> C[传感器与感知] B --> D[轨迹规划] C --> E[多模态融合] D --> F[全身控制] E --> F ``` 3. **开发工具链** - 仿真平台:Gazebo + ROS(Robot Operating System) - 硬件开发:基于STM32的关节控制器 - 机器学习框架:PyTorch-Robotics工具包 #### 三、推荐学习资源 1. **经典教材** - 《Probabilistic Robotics》Thrun等著(含贝叶斯滤波器推导) - 《Modern Robotics》Lynch等著(配套MOOC课程) - 《Embodied Intelligence》MIT Press最新论文集 2. **实践项目** - OpenAI的Dactyl机械手项目(强化学习案例) - Boston Dynamics Atlas开源控制接口 - 双足机器人步态生成GitHub仓库[^2] 3. **视频教程** - Coursera《Robotics: Estimation and Learning》 - edX《Underactuated Robotics》 - 国内资源:深蓝学院《人形机器人控制实践》 #### 四、技术演进趋势 1. **前沿方向** - 神经符号系统:结合深度学习与知识推理 - 触觉反馈:基于$PVDF$压电材料的柔性传感器 - 类人认知:镜像神经网络架构 $$ \text{未来机器人架构} = \underbrace{\text{具身智能}}_{本体} + \underbrace{\text{大模型}}_{认知} + \underbrace{\text{柔性驱动}}_{执行} $$
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值