点击下方卡片,关注「3D视觉工坊」公众号
选择星标,干货第一时间送达
来源:K同学啊
「3D视觉从入门到精通」知识星球(点开有惊喜) !星球内新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!
深度学习中的损失函数(Loss Function)是一个衡量预测结果与真实结果之间差异的函数,也称为误差函数。它通过计算模型的预测值与真实值之间的差值,来评估模型的性能。通常表示为,其值越小,表明模型的预测越接近真实值,从而模型的鲁棒性越好。
损失函数按任务类型分为回归损失和分类损失,分类损失主要处理离散型变量,常用Cross Entropy Loss等;回归损失主要处理连续型变量,常用MSE、MAE等。
本文仅做学术分享,如有侵权,请联系删文。
3D视觉硬件,官网:www.3dcver.com
3D视觉学习圈子
「3D视觉从入门到精通」知识星球(点开有惊喜) !星球内新增20多门3D视觉系统课程、入门环境配置教程、多场顶会直播、顶会论文最新解读、3D视觉算法源码、求职招聘等。想要入门3D视觉、做项目、搞科研,欢迎扫码加入!