SLAM与3DGS学习路线有啥不同?

「3D视觉从入门到精通」星友提问

提问

来自星球嘉宾的解答

3DGS SLAM和传统SLAM做位姿估计完全不是一个体系,传统SLAM是特征提取+特征匹配+PnP/ICP+BA的路线,而GS SLAM是直接渲染RGB/Depth图像,计算loss对pose求梯度。如果是想走GS SLAM的话,我建议可以选一个比较经典的开源框架(比如SplaTAM、MonoGS),先不用着急吃透代码和原理,先把它在公开数据集上跑起来(比如Replica、TUM),运行起来通过GUI你就能理解3D GS到底是个什么东西,运行起来到底是什么样子,然后你可以带着问题“比如它到底是怎么优化的pose,新的高斯点具体是如何生成,具体是如何做的BA”去查文献和代码。通过这个过程你也能看出来这个框架存在哪些问题,解决这些问题,你的创新点和工作量就有了。

### SLAM3D几何形状(3DGS)的实现方法 SLAM(Simultaneous Localization and Mapping)是一种同时进行定位和地图构建的技术,广泛应用于机器人导航、增强现实和自动驾驶等领域。结合3D几何形状(3DGS),可以显著提升地图的精度和场景理解能力[^1]。以下是从技术角度探讨SLAM3DGS结合的实现方法。 #### 1. 数据采集预处理 在SLAM系统中,通常使用传感器如LiDAR或深度相机来获取环境的三维信息。这些数据需要经过预处理以提取关键特征点或几何形状。例如,在DiSCo-SLAM中,通过分布式扫描上下文(Scan Context)来优化多机器人LiDAR SLAM的全局-局部图优化过程[^3]。对于3DGS,几何形状可以通过Gaussian Splatting等方法从点云中提取[^2]。 ```python import numpy as np def preprocess_point_cloud(point_cloud): # 去除噪声点 filtered_cloud = remove_noise(point_cloud) # 提取特征点 keypoints = extract_keypoints(filtered_cloud) return keypoints def remove_noise(point_cloud): # 示例:基于统计的去噪 inliers = point_cloud.statistical_outlier_removal() return inliers def extract_keypoints(filtered_cloud): # 示例:基于法向量的特征提取 keypoints = detect_features(filtered_cloud) return keypoints ``` #### 2. 地图构建 地图构建阶段需要将几何形状整合到SLAM框架中。这可以通过以下方式实现: - **稀疏表示**:利用稀疏点云或特征点来表示环境,适合实时应用。 - **稠密表示**:通过融合深度信息生成稠密的3D模型,适合高精度需求。 - **结合语言模型**:一些研究尝试将自然语言描述几何形状关联,从而增强地图语义化能力[^1]。 #### 3. 定位优化 定位是SLAM的核心任务之一,可以通过以下方法实现: - **位姿估计**:利用ICP(Iterative Closest Point)算法或其变体来匹配当前帧已有地图。 - **图优化**:构建位姿图并通过非线性优化方法(如g2o或Ceres Solver)最小化误差。 - **动态环境处理**:结合Diffusion模型或正则化方法,处理动态物体对定位的影响[^2]。 ```python from g2o import SE3Quat, SparseOptimizer, BlockSolver, LinearSolverEigen def optimize_pose_graph(pose_graph): optimizer = SparseOptimizer() solver = BlockSolver(optimizer) linear_solver = LinearSolverEigen(solver) for node in pose_graph.nodes: optimizer.add_vertex(node) for edge in pose_graph.edges: optimizer.add_edge(edge) optimizer.initialize_optimization() optimizer.optimize(10) return optimizer.vertices() ``` #### 4. 渲染可视化 渲染阶段涉及将几何形状转换为可观察的图像或视频序列。常用的方法包括: - **正则化渲染**:通过对点云或几何形状施加约束条件,确保渲染结果平滑且真实[^1]。 - **混合模型**:结合物理鲜艳模型和动态3DGS,生成逼真的场景效果[^2]。 --- ###
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值