Net是mlp的实例 讲x 输入进net
enumerate(iteration, start):返回一个枚举的对象。enumerate(X, [start=0])
函数中的参数X可以是一个迭代器(iterator)或者是一个序列,start是起始计数值,默认从0开始。
a = {1: 1, 2: 2, 3: 3}
for i , item in enumerate(a): print i, item ----------------- Ouput: 1 2 3
false 不参与训练的 随机放的一个位置
x和self.randweight 做乘法mm +1假设偏移
绝对值求和大于1
nestmlp: net sequential 类和单独层linear的嵌套
net(2) : nn.Linear(8,1)
state_dict()字典 里面啥都有
在pytorch中保存和加载模型时会用到state_dict,它是一个字典对象,记录了模型每层的参数(权重、偏置等)。【PyTorch】state_dict详解_Xhfei1224的博客-CSDN博客在pytorch中,torch.nn.Module模块中的state_dict变量存放训练过程中需要学习的权重和偏执系数,state_dict作为python的字典对象将每一层的参数映射成tensor张量,需要注意的是torch.nn.Module模块中的state_dict只包含卷积层和全连接层的参数,当网络中存在batchnorm时,例如vgg网络结构,torch.nn.Module模块中的state_dict也会存放batchnorm’s running_mean,关于batchnorm详解可见hthttps://blog.csdn.net/weixin_41990278/article/details/106459727
f‘block{1}’ 传字符串的名字 不用告诉我012345 直接告诉我block0 block1
nn,uniform_ 均与分布
net【0】。weigth。data【:】+=1 所有元素加1
net查的不对 nn。relu()也算一个net
没有pytorch
检查参数是不是保存啦 可以用不