【带遗忘因子的递归最小二乘估计算法(Recursive least squares, RLS)】封装Matlab函数

背景

本人最近设计的算法,需要用到带遗忘因子的RLS估计,于是将其封装为函数,后续使用直接进行调用即可。
设计加入的遗忘因子 λ ∈ [ 0 , 1 ] \lambda \in[0,1] λ[0,1]可以调节收敛速度,使得可以在收敛速度和波动程度之间灵活调节,遗忘因子的经验值 λ ∈ [ 0.9 , 1 ] \lambda \in[0.9,1] λ[0.9,1]
注意:封装的函数仅仅是单一时刻的计算,调用需要在循环体内进行。

函数代码

%Project: 带遗忘因子的递归最小二乘法
%Author: Jace
%Data: 2022/04/10
%====================函数体====================
function [P,xRls]=Rls(Dim,H,R,Pp,xRlsp,y,lambda)
    I=eye(Dim);
    
    K=Pp*H'/(H*Pp*H'+R);  
    xRls=(I-K*H)*xRlsp+K*y;
    if nargin==6 %参数个数判断是否含有遗忘因子
        P=
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值