![](https://i-blog.csdnimg.cn/columns/default/20201014180756916.png?x-oss-process=image/resize,m_fixed,h_224,w_224)
算法
文章平均质量分 67
Jace Lee
电子与通信工程
网络化信息处理
安全状态估计 信息融合 滤波
展开
-
PID控制算法学习与Matlab仿真
PID控制算法简介与简单仿真原创 2022-06-12 22:40:16 · 5069 阅读 · 2 评论 -
模糊控制与自适应控制
模糊控制算法与自适应控制算法简介和简单理解原创 2022-06-12 11:38:52 · 3499 阅读 · 0 评论 -
【带遗忘因子的递归最小二乘估计算法(Recursive least squares, RLS)】封装Matlab函数
文章目录背景函数代码调用方法调用测试函数仿真效果不选用遗忘因子时遗忘因子选为0.96时背景本人最近设计的算法,需要用到带遗忘因子的RLS估计,于是将其封装为函数,后续使用直接进行调用即可。设计加入的遗忘因子λ∈[0,1]\lambda \in[0,1]λ∈[0,1]可以调节收敛速度,使得可以在收敛速度和波动程度之间灵活调节,遗忘因子的经验值λ∈[0.9,1]\lambda \in[0.9,1]λ∈[0.9,1]注意:封装的函数仅仅是单一时刻的计算,调用需要在循环体内进行。函数代码%Proje原创 2022-04-14 22:36:30 · 8223 阅读 · 1 评论 -
威布尔分布拟合/威布尔参数估计Matlab函数
最小二乘法拟合威布尔分布Matlab函数,可以直接调用使用原创 2022-03-04 22:14:54 · 18557 阅读 · 7 评论 -
指数加权思想
背景数据融合的过程中存在可信度的问题,因此在融合算法中加权融合的方式是非常经典的方式,其中的权重体现的就是融合的置信度,也就是相应子系统数据的可信度、可靠性、精度。融合的权重wiw_iwi通常与子数据的协方差PPP挂钩,通过一些处理实现如下x^o(t∣t)=∑i=1Nwix^i(t∣t)\hat{x}_o(t|t)=\sum_{i=1}^{N}w_i \hat{x}_i(t|t)x^o(t∣t)=i=1∑Nwix^i(t∣t)其中wi∈[0,1]w_i\in [0,1]wi∈[0,1]原创 2022-03-02 17:46:04 · 798 阅读 · 0 评论 -
威布尔分布用于其他场景时的具体参数估计
回顾威布尔累积分布为F(t)=1−exp[−(tη)β]F(t)=1-exp\left [ -\left ( \frac{t}{\eta } \right )^{\beta } \right ]F(t)=1−exp[−(ηt)β]此分布可以用在很多领域(不仅仅是质量可靠性来反映时间长度与故障累积概率)由前面我们了解到常用最小二乘法用于求得威布尔分布的参数,详情回顾见此博客威布尔分布的参数估计提到,对于样本(xi,F(xi))(x_i,F(x_i))(xi,F(xi))的获取,对于可靠性而言:原创 2022-03-01 23:06:03 · 1261 阅读 · 0 评论 -
威布尔分布参数估计
在对设备的故障进行分析时,如果能够找到故障的规律,并将这些规律用数学模型表述出来,从而便于人们对设备的运行趋势有足够判断,这样的过程称为可靠性分析。通常情况下,这些数学模型为某些故障概率,带有一些未知参数,通过对参数的估计得到准确的参数。威布尔分布函数模型就是这样典型的可靠性模型,常用于设备的研究中。威布尔分布分为两参数和三参数。原创 2022-02-27 21:57:50 · 11099 阅读 · 2 评论 -
几个融合算法的思考
如何论证算法最优(Optimal)的问题?如何论证算法全局最优(Global Optimal)的问题?如何理解分布式滤波最优能达到集中式滤波的性能?各融合算法设定的条件联邦滤波(DFF)矩阵权值融合算法(DFFWM)Kalman结构分布式最优线性融合算法(DOLFE)为什么带反馈的DOLFEWF不需要计算局部滤波互协方差?那么为什么带反馈的DOLFEWF不需要计算局部滤波互协方差,是反馈解决了局部相关性的问题吗?DOLFEWF的最优性有什么前提条件吗?如何论证算法最优(Optimal)的问题?基原创 2021-11-10 19:10:00 · 4020 阅读 · 8 评论 -
联邦滤波算法封装Matlab函数
本人最近需要写多个仿真,需要用到联邦滤波Federal Filter算法效果对比,于是干脆将联邦滤波算法封装为函数,后续使用直接进行调用即可。原创 2021-11-02 15:37:33 · 2062 阅读 · 6 评论 -
MSE(均方误差)计算封装Matlab函数
文章目录背景函数代码调用方法调用测试函数背景本人最近需要写多个仿真,需要大量用到MSE(均方误差)计算,于是干脆将MSE运算封装为函数,后续使用直接进行调用即可。函数代码%Project: 均方误差函数%Author: Jace%Data: 2021/11/01%====================函数体====================function [MSE]=MSE(Dim,Step,N,xkf,x) %====================分配空间=======原创 2021-11-02 10:15:35 · 4442 阅读 · 0 评论 -
Kalman滤波封装Matlab函数
文章目录背景函数代码调用方法调用测试函数背景本人最近需要写多个仿真,需要大量用到本地标准Kalman滤波,于是干脆将Kalman滤波的算法封装为函数,后续使用直接进行调用即可。注意:封装的函数仅仅是单一时刻的计算,调用需要在循环体内进行。函数代码%Project: 本地滤波器函数(有无输入量通用)%Author: Jace%Data: 2021/10/25%====================函数体====================function [P,xkf,K]=Lkf(D原创 2021-11-02 10:14:34 · 1745 阅读 · 1 评论 -
二维标准Kalman滤波
二维标准kalman滤波仿真,绘制了噪声、跟踪状态和误差图,并且加入了攻击的代码部分,需要在第一个状态量的量测值中设置攻击的时候,将attack变量设置为1,会在20-40,60-80时刻加入相应攻击,攻击变量为atk可以自己设置。原创 2021-10-06 11:10:03 · 3599 阅读 · 0 评论 -
嵌入式【带故障检测和安全估计功能】温湿度传感器上云项目开发文档
嵌入式开发板采集温湿度数据,并且上报在阿里云,然后再移动端显示出来。同时实现温湿度传感器的故障报警和安全估计功能。原创 2021-09-23 21:45:36 · 1891 阅读 · 0 评论 -
一个用C语言编写的单传感器室内湿度Kalman滤波
室内湿度单传感器Kalman滤波,同时带有故障或攻击检测功能。原创 2021-09-27 10:49:24 · 489 阅读 · 0 评论 -
NRD安全估计算法的仿真过程及思考
文章目录算法思考算法原理仿真背景模型设置攻击设置(与RWD中完全相同)代码效果及分析隐匿攻击分析噪声设置追踪效果估计误差量测值记录攻击检测检测率非隐匿攻击分析噪声设置追踪效果估计误差量测值记录攻击检测检测率极端非隐匿攻击分析噪声设置追踪效果估计误差量测值记录攻击检测检测率算法思考算法原理本质上说,NRD其实就是一维的(标量的)卡方检测+标准Kalman滤波+恢复算法。因此其攻击检测原理与标准卡方检测一致,都是考量两种分布的一致性情况,一致性越差,结果参量越大。于是就可以通过这种方法检测出攻击下的分布和原创 2021-09-21 16:57:56 · 739 阅读 · 0 评论 -
RWD安全估计算法的仿真过程及思考
文章目录仿真背景模型设置攻击设置代码效果及分析隐匿攻击追踪效果估计误差(可以看出与标准Kalman差不多)攻击检测(能够实现对发生攻击的传感器的检出)检测率非隐匿攻击极端非隐匿攻击算法思考为什么要进行窗口长度的取平均?仿真背景模型设置为了简单,使用一个不相关双通道两传感器的模型,两个传感器每时刻独立地观测两个状态量,并进行融合。RWD算法的使用背景为智能电网,电网中的参数变化缓慢,一般可以认为是稳定系统,因此设定状态转移矩阵A为单位矩阵,系统参数波动仅由噪声引起。攻击设置依照文献设置,分为三种情原创 2021-09-18 17:06:17 · 435 阅读 · 0 评论 -
两相关传感器(双通道) 一维 联邦滤波Matlab仿真(对比局部滤波)
条件设定的条件为两个传感器,同时观测一个状态量,对两个传感器对应的局部滤波进行融合(使用联邦滤波算法),并加入单独的局部滤波的对比,联邦滤波算法核心:代码%Project: 相关 双通道 一维 kalman滤波%Author: Jace%Data: 2021/09/13%--------------------准备---------------------close all;clear all;clc;%------------------初始化参数------------------原创 2021-09-14 10:23:03 · 1375 阅读 · 6 评论 -
两不相关传感器(双通道) 二维 kalman滤波Matlab仿真
条件设定的条件为两个传感器,每个传感器独立观测一个状态量,但两个状态量之间存在耦合(A矩阵非对角线上不为0)的情况下,对两个传感器对应的局部滤波进行融合(使用的是最简单的算法):两个传感器下就是:代码%Project: 不相关 双通道 二维 kalman滤波%Author: Jace%Data: 2021/09/12%--------------------准备---------------------close all;clear all;clc;%---------------原创 2021-09-13 16:40:19 · 878 阅读 · 0 评论 -
对凸优化概念的理解
文章目录基本概念什么是凸优化什么是凸函数什么是凸集进阶凸优化到底是干嘛的?最小二乘也是一种凸优化全局最优化与局部最优化基本概念什么是凸优化【百度百科定义】凸优化,或叫做凸最优化,凸最小化,是数学最优化的一个子领域,研究定义于凸集中的凸函数最小化的问题。凸优化这个概念实际在研究中经常会遇到。包括在机器学习、控制领域等等。最小二乘其实就是一种通过凸优化来实现的问题。什么是凸函数凸表明的是下凸,也就是上凹,直观地讲,函数形为即为凸函数。什么是凸集【百度百科】令S是实数上的线性空间,或者原创 2021-09-05 15:45:54 · 1520 阅读 · 0 评论