威布尔分布参数估计

本文详细介绍了威布尔分布如何在设备可靠性分析中应用,包括两参数和三参数模型的定义,以及最小二乘法在参数估计中的关键步骤。通过实例展示了如何通过计算得到参数β和η,并解释了最小二乘法拟合原理和损失函数的优化过程。
摘要由CSDN通过智能技术生成

什么是威布尔分布

在对设备的故障进行分析时,如果能够找到故障的规律,并将这些规律用数学模型表述出来,从而便于人们对设备的运行趋势有足够判断,这样的过程称为可靠性分析。通常情况下,这些数学模型为某些故障概率,带有一些未知参数,通过对参数的估计得到准确的参数。威布尔分布函数模型就是这样典型的可靠性模型,常用于设备的研究中。威布尔分布分为两参数和三参数。

本质上而言,威布尔分布就是设计出来的一种符合设备故障率的分布,其中两参数威布尔分布为:
h ( t ) = β η ( t η ) β − 1 e x p [ − ( t η β ) ] h(t)=\frac{\beta }{\eta }\left ( \frac{t}{\eta } \right )^{\beta -1}exp\left [ -\left ( \frac{t}{\eta }^{\beta } \right ) \right ] h(t)=ηβ(ηt)β1exp[(ηtβ)]
F ( t ) = 1 − e x p [ − ( t η ) β ] F(t)=1-exp\left [ -\left ( \frac{t}{\eta } \right )^{\beta } \right ] F(t)=1exp[(ηt)β]

威布尔分布的参数估计方法

常用最小二乘法用于求得威布尔分布的参数 β \beta β η \eta η
上式整理后两边取两次自然对数得
l n l n 1 1 − F ( t ) = β l n ( t ) − β l n ( η ) lnln\frac{1}{1-F(t)}=\beta ln(t)-\beta ln(\eta ) lnln1F(t)1=βln(t)βln(η)

{ y = l n l n [ 1 1 − F ( t ) ] x = l n ( t ) b = − β l n ( η ) w = β \left\{\begin{matrix} y=ln ln\left [ \frac{1}{1-F(t)} \right ] \\x=ln(t) \\b=-\beta ln(\eta ) \\w=\beta \end{matrix}\right. y=lnln[1F(t)1]x=ln(t)b=βln(η)w=β
即可得到如下形式
y = b + w x y=b+wx y=b+wx
利用得到的样本数据
( x 1 , y 1 ) ⋯ ( x n , y n ) (x_1,y_1) \cdots (x_n,y_n) (x1,y1)(xn,yn)
来估计得到 w ^ \hat{w} w^ b ^ \hat{b} b^即可代替 w w w b b b作为参数:
y i = b ^ + w ^ x i y_i=\hat{b}+\hat{w}x_i yi=b^+w^xi
那么估计值和真实值之间的距离为
y i − y i ^ = y i − b ^ − w ^ x i y_i-\hat{y_i}=y_i-\hat{b}-\hat{w}x_i yiyi^=yib^w^xi
而最小二乘法拟合直线的本质是找到到所有样本点距离最小的直线
在这里插入图片描述
因此拟合的损失函数为
Q ( w , b ) = ∑ i = 1 n ( y i − b − w x i ) 2 Q(w,b)=\sum_{i=1}^{n}(y_i-b-wx_i)^2 Q(w,b)=i=1n(yibwxi)2
最终的目标为
Q ( w ^ , b ^ ) = m i n Q ( w , b ) Q(\hat{w},\hat{b})=min Q(w,b) Q(w^,b^)=minQ(w,b)
因此通过求偏导数,如下:
{ ∂ Q ∂ w = − 2 ∑ i = 1 n ( y i − b − w x i ) x i = 0 ∂ Q ∂ b = − 2 ∑ i = 1 n ( y i − b − w x i ) = 0 \left\{\begin{matrix} \frac{\partial Q}{\partial w}=-2\sum_{i=1}^{n}(y_i-b-wx_i)x_i=0 \\ \frac{\partial Q}{\partial b}=-2\sum_{i=1}^{n}(y_i-b-wx_i)=0 \end{matrix}\right. {wQ=2i=1n(yibwxi)xi=0bQ=2i=1n(yibwxi)=0
解之得
{ w ^ = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 b ^ = y ˉ − x ˉ w ^ \left\{\begin{matrix} \hat{w}=\frac{\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}}{\sum_{i=1}^{n}x_i^2-n\bar{x}^2} \\ \hat{b}=\bar{y}-\bar{x}\hat{w} \end{matrix}\right. {w^=i=1nxi2nxˉ2i=1nxiyinxˉyˉb^=yˉxˉw^
其中 x ˉ = 1 n ∑ i = 1 n x i \bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_i xˉ=n1i=1nxi y ˉ = 1 n ∑ i = 1 n y i \bar{y}=\frac{1}{n}\sum_{i=1}^{n}y_i yˉ=n1i=1nyi,更进一步得
{ β ^ = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 η ^ = e x ˉ − y ˉ β \left\{\begin{matrix} \hat{\beta }=\frac{\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}}{\sum_{i=1}^{n}x_i^2-n\bar{x}^2} \\ \hat{\eta }=e^{\bar{x}-\frac{\bar{y}}{\beta }} \end{matrix}\right. {β^=i=1nxi2nxˉ2i=1nxiyinxˉyˉη^=exˉβyˉ

估计威布尔分布的参数有多种方法,以下是几种常见的方法: 1. 最大似然估计(Maximum Likelihood Estimation, MLE):最大似然估计是一种常用的参数估计方法。它通过寻找能够最大化观测数据的似然函数的参数值来进行估计。对于威布尔分布,可以通过最大化威布尔分布的似然函数来估计形状参数和尺度参数。 2. 图形法(Graphical Method):图形法是一种简单直观的估计方法,它基于观察数据的累积分布函数(CDF)和经验分位数图。通过绘制经验分位数图并与威布尔分布的理论分位数进行比较,可以粗略地估计威布尔分布的参数。 3. 矩估计(Moment Estimation):矩估计是一种基于样本矩的参数估计方法。通过计算样本矩和理论矩之间的差异,可以得到威布尔分布参数估计值。对于威布尔分布,可以使用样本均值和样本方差来进行矩估计。 4. 最小二乘法(Least Squares Estimation):最小二乘法是一种常用的拟合方法,它通过最小化观测数据与拟合模型之间的平方差来进行参数估计。对于威布尔分布,可以将观测数据的对数转换为线性形式,然后使用最小二乘法来拟合直线,从而估计威布尔分布的参数。 值得注意的是,不同的参数估计方法可能会产生略微不同的结果。选择合适的估计方法取决于数据的特点、具体应用场景和估计结果的准确性要求。在实际应用中,可以尝试多种方法来进行参数估计,并进行对比和验证,以选择最合适的估计方法。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值