威布尔分布参数估计

本文详细介绍了威布尔分布如何在设备可靠性分析中应用,包括两参数和三参数模型的定义,以及最小二乘法在参数估计中的关键步骤。通过实例展示了如何通过计算得到参数β和η,并解释了最小二乘法拟合原理和损失函数的优化过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

什么是威布尔分布

在对设备的故障进行分析时,如果能够找到故障的规律,并将这些规律用数学模型表述出来,从而便于人们对设备的运行趋势有足够判断,这样的过程称为可靠性分析。通常情况下,这些数学模型为某些故障概率,带有一些未知参数,通过对参数的估计得到准确的参数。威布尔分布函数模型就是这样典型的可靠性模型,常用于设备的研究中。威布尔分布分为两参数和三参数。

本质上而言,威布尔分布就是设计出来的一种符合设备故障率的分布,其中两参数威布尔分布为:
h ( t ) = β η ( t η ) β − 1 e x p [ − ( t η β ) ] h(t)=\frac{\beta }{\eta }\left ( \frac{t}{\eta } \right )^{\beta -1}exp\left [ -\left ( \frac{t}{\eta }^{\beta } \right ) \right ] h(t)=ηβ(ηt)β1exp[(ηtβ)]
F ( t ) = 1 − e x p [ − ( t η ) β ] F(t)=1-exp\left [ -\left ( \frac{t}{\eta } \right )^{\beta } \right ] F(t)=1exp[(ηt)β]

威布尔分布的参数估计方法

常用最小二乘法用于求得威布尔分布的参数 β \beta β η \eta η
上式整理后两边取两次自然对数得
l n l n 1 1 − F ( t ) = β l n ( t ) − β l n ( η ) lnln\frac{1}{1-F(t)}=\beta ln(t)-\beta ln(\eta ) lnln1F(t)1=βln(t)βln(η)

{ y = l n l n [ 1 1 − F ( t ) ] x = l n ( t ) b = − β l n ( η ) w = β \left\{\begin{matrix} y=ln ln\left [ \frac{1}{1-F(t)} \right ] \\x=ln(t) \\b=-\beta ln(\eta ) \\w=\beta \end{matrix}\right. y=lnln[1F(t)1]x=ln(t)b=βln(η)w=β
即可得到如下形式
y = b + w x y=b+wx y=b+wx
利用得到的样本数据
( x 1 , y 1 ) ⋯ ( x n , y n ) (x_1,y_1) \cdots (x_n,y_n) (x1,y1)(xn,yn)
来估计得到 w ^ \hat{w} w^ b ^ \hat{b} b^即可代替 w w w b b b作为参数:
y i = b ^ + w ^ x i y_i=\hat{b}+\hat{w}x_i yi=b^+w^xi
那么估计值和真实值之间的距离为
y i − y i ^ = y i − b ^ − w ^ x i y_i-\hat{y_i}=y_i-\hat{b}-\hat{w}x_i yiyi^=yib^w^xi
而最小二乘法拟合直线的本质是找到到所有样本点距离最小的直线
在这里插入图片描述
因此拟合的损失函数为
Q ( w , b ) = ∑ i = 1 n ( y i − b − w x i ) 2 Q(w,b)=\sum_{i=1}^{n}(y_i-b-wx_i)^2 Q(w,b)=i=1n(yibwxi)2
最终的目标为
Q ( w ^ , b ^ ) = m i n Q ( w , b ) Q(\hat{w},\hat{b})=min Q(w,b) Q(w^,b^)=minQ(w,b)
因此通过求偏导数,如下:
{ ∂ Q ∂ w = − 2 ∑ i = 1 n ( y i − b − w x i ) x i = 0 ∂ Q ∂ b = − 2 ∑ i = 1 n ( y i − b − w x i ) = 0 \left\{\begin{matrix} \frac{\partial Q}{\partial w}=-2\sum_{i=1}^{n}(y_i-b-wx_i)x_i=0 \\ \frac{\partial Q}{\partial b}=-2\sum_{i=1}^{n}(y_i-b-wx_i)=0 \end{matrix}\right. {wQ=2i=1n(yibwxi)xi=0bQ=2i=1n(yibwxi)=0
解之得
{ w ^ = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 b ^ = y ˉ − x ˉ w ^ \left\{\begin{matrix} \hat{w}=\frac{\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}}{\sum_{i=1}^{n}x_i^2-n\bar{x}^2} \\ \hat{b}=\bar{y}-\bar{x}\hat{w} \end{matrix}\right. {w^=i=1nxi2nxˉ2i=1nxiyinxˉyˉb^=yˉxˉw^
其中 x ˉ = 1 n ∑ i = 1 n x i \bar{x}=\frac{1}{n}\sum_{i=1}^{n}x_i xˉ=n1i=1nxi y ˉ = 1 n ∑ i = 1 n y i \bar{y}=\frac{1}{n}\sum_{i=1}^{n}y_i yˉ=n1i=1nyi,更进一步得
{ β ^ = ∑ i = 1 n x i y i − n x ˉ y ˉ ∑ i = 1 n x i 2 − n x ˉ 2 η ^ = e x ˉ − y ˉ β \left\{\begin{matrix} \hat{\beta }=\frac{\sum_{i=1}^{n}x_iy_i-n\bar{x}\bar{y}}{\sum_{i=1}^{n}x_i^2-n\bar{x}^2} \\ \hat{\eta }=e^{\bar{x}-\frac{\bar{y}}{\beta }} \end{matrix}\right. {β^=i=1nxi2nxˉ2i=1nxiyinxˉyˉη^=exˉβyˉ

### 布尔分布参数估计方法 在 Matlab 中可以利用最大似然估计法来进行布尔分布的参数估计。`wblfit` 函数能够用于计算数据样本的最大似然估计值,该函数返回形状参数 `a` 和尺度参数 `b` 的估计值[^1]。 对于给定的数据集 `data`,可以通过调用如下形式的命令完成参数估计: ```matlab params = wblfit(data); shape_param = params(1); % 形状参数 a scale_param = params(2); % 尺度参数 b ``` 为了验证所得到的参数估计效果,还可以绘制拟合曲线与原始直方图对比。下面提供一段完整的示例代码展示如何执行这一过程并可视化结果。 ```matlab % 生成一些服从 Weibull 分布的随机数作为测试数据 rng('default'); % 设置随机种子以便重复实验 test_data = wblrnd(0.8, 1.2, [1000, 1]); % 使用 wblfit 进行参数估计 estimated_params = wblfit(test_data); disp(['Estimated shape parameter (a): ', num2str(estimated_params(1))]); disp(['Estimated scale parameter (b): ', num2str(estimated_params(2))]); % 绘制直方图以及拟合后的概率密度函数图像 figure; histogram(test_data, 'Normalization', 'pdf'); hold on; x_values = linspace(min(test_data), max(test_data)); y_values = weibull_pdf(x_values, estimated_params(1), estimated_params(2)); plot(x_values, y_values, '-r', 'LineWidth', 2); legend('Histogram of Data', 'Fitted PDF') title('Weibull Distribution Parameter Estimation Result') xlabel('Value') ylabel('Probability Density') function pdf_val = weibull_pdf(x, a, b) pdf_val = (a / b) * (x ./ b).^(a - 1) .* exp(-(x ./ b).^a); end ```
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值