以下是一个系统性的学习路径,帮助技术人员快速掌握生成式AI,可参考。
前排提示,文末有大模型AGI-CSDN独家资料包哦!
1. 打好基础:了解AI和深度学习的基本概念
-
数学基础: 线性代数、概率论、微积分等是理解生成式AI中模型结构和优化过程的关键。
-
机器学习基础: 掌握经典的机器学习算法,如线性回归、逻辑回归、SVM等。这些概念帮助理解AI模型的学习过程。
-
深度学习基础: 学习神经网络的原理,掌握前馈网络、反向传播、优化算法等核心技术。
推荐资源:
-
书籍:《深度学习》 by Ian Goodfellow, Yoshua Bengio, Aaron Courville
-
在线课程: Andrew Ng的机器学习课程、FastAI深度学习课程
2. 理解生成式模型的核心原理
生成式AI是通过学习数据的分布来生成新样本的模型,常见的生成模型包括以下几类:
-
生成对抗网络(GANs): 通过两个网络(生成器和判别器)的对抗训练,生成逼真的数据样本。GANs已经广泛应用于图像生成、风格转换等领域。
-
变分自编码器(VAEs): 基于概率图模型的生成网络,通过学习数据的隐变量分布来生成新数据。
-
自回归模型: 如PixelCNN、WaveNet等,基于历史生成的样本生成新的样本。
-
扩散模型: 近年来兴起的生成模型,如Stable Diffusion,用于生成高质量的图像。
推荐资源:
-
Ian Goodfellow的《Generative Adversarial Networks》论文
-
Diederik P Kingma的《Auto-Encoding Variational Bayes》论文
3. 掌握主流的生成式AI框架和工具
对技术人员来说,实际操作非常重要。掌握相关框架和工具有助于将理论知识应用到实际项目中:
深度学习框架:
-
PyTorch:易于使用的张量计算库,拥有强大的社区支持。
-
TensorFlow:Google开发的深度学习框架,适合部署生产级应用。
专用生成式AI库:
-
Hugging Face:提供大量预训练的语言模型,如GPT-2、GPT-3等,可以用于文本生成。
-
OpenAI API:可以调用预训练的模型,如GPT-4、DALL-E等,用于图像和文本生成。
-
Diffusers库(Hugging Face):专注于扩散模型生成的图像任务。
推荐资源:
-
PyTorch和TensorFlow官方文档
-
Hugging Face的在线教程和示例代码
4. 实践项目:动手实现生成式AI模型
理论和工具学会之后,需要通过实际项目来加深理解:
-
图像生成项目: 使用GANs或扩散模型生成高质量的图像,尝试使用现有数据集(如CelebA、MNIST)进行训练。
-
文本生成项目: 基于GPT系列模型生成文本,理解语言模型的预训练和微调过程。
-
跨模态生成项目: 如文本生成图像(DALL-E 类似项目),结合不同模态的数据生成内容。
项目建议:
-
创建一个基于GAN的图像风格转换器(如Pix2Pix)
-
使用预训练的语言模型生成文章或对话
-
利用扩散模型生成艺术风格的图像
5. 学习前沿进展,紧跟技术趋势
生成式AI技术日新月异,保持对领域内最新进展的了解十分重要。以下是几种方式来跟进最新研究:
-
阅读最新论文: 可以定期浏览arXiv.org,查找与生成式AI相关的最新论文,了解新的模型和算法。
-
参加AI相关的会议和论坛: 如NeurIPS、ICML、CVPR等国际会议,关注最新技术演讲和研究进展。
-
使用开源社区资源: 参与GitHub上的生成式AI项目,通过贡献代码或进行复现实验加深对新技术的理解。
推荐平台:
-
arXiv.org: 预印本论文库,收录最新的生成式AI研究论文
-
GitHub: 许多开源项目,提供最新的模型代码和实现
学习生成式AI是一个综合性的过程,需要持续跟进最新的研究成果和技术进展,保持好奇心和开放的心态,才能在这个快速发展的领域中不断前进。
如何学习AI大模型?
大模型时代,火爆出圈的LLM大模型让程序员们开始重新评估自己的本领。 “AI会取代那些行业
?”“谁的饭碗又将不保了?
”等问题热议不断。
不如成为「掌握AI工具的技术人
」,毕竟AI时代,谁先尝试,谁就能占得先机!
想正式转到一些新兴的 AI 行业,不仅需要系统的学习AI大模型。同时也要跟已有的技能结合,辅助编程提效,或上手实操应用,增加自己的职场竞争力。
但是LLM相关的内容很多,现在网上的老课程老教材关于LLM又太少。所以现在小白入门就只能靠自学,学习成本和门槛很高
那么针对所有自学遇到困难的同学们,我帮大家系统梳理大模型学习脉络,将这份 LLM大模型资料
分享出来:包括LLM大模型书籍、640套大模型行业报告、LLM大模型学习视频、LLM大模型学习路线、开源大模型学习教程
等, 😝有需要的小伙伴,可以 扫描下方二维码领取🆓↓↓↓
👉[CSDN大礼包🎁:全网最全《LLM大模型入门+进阶学习资源包》免费分享(安全链接,放心点击)]()👈
学习路线
第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;
第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;
第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;
第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;
第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;
第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;
第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。
👉学会后的收获:👈
• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;
• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;
• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;
• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。
1.AI大模型学习路线图
2.100套AI大模型商业化落地方案
3.100集大模型视频教程
4.200本大模型PDF书籍
5.LLM面试题合集
6.AI产品经理资源合集
👉获取方式:
😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓