DeepSeek的爆火带动了大家更加关注AI,Manus的横空出世带动了大家对智能体的关注,2025年注定是智能体时代,简单的AI问答对话向多功能协同、自动化执行复杂任务方向发展。智能体对我们的学习工作效率的提升必然有质的飞跃。
一、Agent是什么?
如果把大模型比作“学霸大脑”,Agent就是给它装上“手脚”的智能管家。
1.1 基础定义AI Agent(智能体)是能像人类一样感知环境→思考决策→主动行动的智能系统。比如你让传统AI“写一首诗”,它直接生成文字;但若让Agent“策划母亲节惊喜”,它会自动查天气、订鲜花、选礼物。
1.2 三大核心特征
- 会动脑:能拆解复杂任务(如“写毕业论文”分解为查资料→列大纲→写初稿→查重)
- 会动手:调用计算器算账、用搜索引擎查资料、连智能家居调室温
- 会成长:记住你爱喝拿铁、讨厌周一开会,下次点咖啡自动加双份糖,开会前帮你屏蔽消息
1.3 与传统AI的区别
类型 | 工作模式 | 典型场景 |
---|---|---|
传统AI | 问答式响应:“问什么答什么” | ChatGPT写邮件、Midjourney画图 |
Agent | 管家式服务:“给目标就搞定” | 自动整理会议纪要→提炼待办事项→同步给同事11 |
二、Agent如何工作?
2.1 身体构造Agent = 超级大脑(大模型) + 记事本(记忆库) + 工具箱(API) + 计划表(任务流)
- 大脑:GPT-4等模型负责理解“把空调调到26℃”背后的真实需求(可能是省电或体感舒适)
- 记事本:记住你每天7点起床,周末喜欢睡懒觉
- 工具箱:能操作美团API订餐、调用扫地机器人、访问健康手环数据
- 计划表:遇到“筹备婚礼”这种复杂任务,自动拆解为“订酒店→发请柬→试婚纱”等20个子步骤
2.2 工作流程
-
听指令:“下周三带爸妈去杭州玩两天”
-
查资料:爬取天气/高铁票/西湖游客量数据
-
做计划:推荐避开高峰的早班车+无障碍通道酒店
-
勤汇报:生成包含行程单、预算表、备选方案的PPT
-
会应变:若发现下雨自动添加“室内游览”备选方案
三、Agent正在改变什么?
3.1 生活场景
- 健康管家:凌晨发现你心率异常→自动联系家庭医生→叫救护车→通知家属
- 学习助手:给孩子布置数学题→批改作业→分析错题原因→推荐针对性网课
- 旅行策划:根据预算推荐“人均800元厦门游”,包含小众打卡点和防宰客攻略
3.2 工作革命
- 会议秘书:听懂中英文混杂的讨论→实时生成思维导图→标注待决策事项
- 数据分析师:自动抓取销售数据→用Python清洗→生成动态可视化报表
- 代码工程师:把“做个微信小程序”的需求,拆解成UI设计+后端开发+测试部署全流程
3.3 行业颠覆
- 医疗:影像Agent看CT片比人类快100倍,还能对比全球相似病例
- 金融:实时监控5000只股票,暴跌前自动止损并短信提醒
四、Agent的成长之路
4.1 发展阶段
- 婴儿期(2010年前):只能玩象棋的“深蓝”,规则全靠人类灌输
- 学步期(2020年):AlphaGo会自学下棋,但换个游戏就得重学
- 青春期(2024年后):ChatGPT突破语言关,学会用工具应对多任务
4.2 未来趋势
- 更懂人心:通过眼神和语气判断你是真生气还是开玩笑
- 跨界合作:装修Agent联动设计软件+建材商城+监理机器人
- 自我进化:每天阅读最新论文,医学Agent的诊疗方案每月迭代
如何学习大模型 AI ?
由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。
但是具体到个人,只能说是:
“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。
这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。
我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。
我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。
这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费
】
第一阶段(10天):初阶应用
该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。
- 大模型 AI 能干什么?
- 大模型是怎样获得「智能」的?
- 用好 AI 的核心心法
- 大模型应用业务架构
- 大模型应用技术架构
- 代码示例:向 GPT-3.5 灌入新知识
- 提示工程的意义和核心思想
- Prompt 典型构成
- 指令调优方法论
- 思维链和思维树
- Prompt 攻击和防范
- …
第二阶段(30天):高阶应用
该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。
- 为什么要做 RAG
- 搭建一个简单的 ChatPDF
- 检索的基础概念
- 什么是向量表示(Embeddings)
- 向量数据库与向量检索
- 基于向量检索的 RAG
- 搭建 RAG 系统的扩展知识
- 混合检索与 RAG-Fusion 简介
- 向量模型本地部署
- …
第三阶段(30天):模型训练
恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。
到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?
- 为什么要做 RAG
- 什么是模型
- 什么是模型训练
- 求解器 & 损失函数简介
- 小实验2:手写一个简单的神经网络并训练它
- 什么是训练/预训练/微调/轻量化微调
- Transformer结构简介
- 轻量化微调
- 实验数据集的构建
- …
第四阶段(20天):商业闭环
对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。
- 硬件选型
- 带你了解全球大模型
- 使用国产大模型服务
- 搭建 OpenAI 代理
- 热身:基于阿里云 PAI 部署 Stable Diffusion
- 在本地计算机运行大模型
- 大模型的私有化部署
- 基于 vLLM 部署大模型
- 案例:如何优雅地在阿里云私有部署开源大模型
- 部署一套开源 LLM 项目
- 内容安全
- 互联网信息服务算法备案
- …
学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。
如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。