收藏学习!吴恩达AI Agent四大设计范式深度解析,从入门到实战精通大模型应用

本文详细解析了吴恩达提出的AI Agent四大设计范式:反思机制实现自我迭代优化;工具使用扩展模型能力边界;规划范式将复杂任务分解为子任务序列;多智能体协作通过角色分工实现集体智能。文章进一步探讨了技术演进趋势,包括反思机制升级、工具生态扩展、规划智能化及协作模式创新,强调Agent是实现人工通用智能的重要途径,当前已展现出实际应用价值。

一、Agent设计范式的提出

2024年3月26日,吴恩达在 红杉AI Ascent 2024峰会上,详细阐述了他对AI Agent(智能体)的前沿见解,并提出了四种关键设计范式。吴恩达的演讲引发广泛关注,成为推动Agentic Workflow(智能体工作流)概念普及的关键节点。

吴恩达(Andrew Ng):斯坦福大学计算机科学教授,AI领域的领军人物,是人工智能与机器学习领域的国际权威学者和企业家,其职业生涯横跨学术、工业与教育领域。

在这里插入图片描述

二、Agent 四大设计范式

1,反思(Reflection)

通过自我评估和迭代优化提升输出质量,使AI具备类似人类的“自我审查”能力。

其流程分为三个关键步骤:

  • 生成初步结果(如代码、文本)
  • 调用评估模块检查潜在问题(如代码语法错误、事实性错误)
  • 根据评估结果进行多轮优化(一般2-3次迭代即可显著提升质量)

举个例子:

我们让用 Reflection 构建好的一个 AI 系统写个xxx代码,然后 AI 会把这个代码,加上类似“检查此段代码的正确性,告诉我如何修改”的话术(提示词),再返回给 AI,AI可能会给你提出其中的 Bug,然后如此反复,AI 自己完成了自我迭代,虽然修改后的代码质量不一定能保证,但基本上来说效果会更好。
在这里插入图片描述

如上表述的是案例是 Single-agent(区别于 Mutli-agent 的单智能体),但其实你也可以用两个 Agent,一个写代码,然后另一个来 Debug

在这里插入图片描述

2,工具使用(Tool Use)

突破语言模型的固有能力边界,通过与外部工具交互实现功能扩展。

Agent不仅仅依赖自身预训练的知识和能力,还能根据任务需求,适时、恰当地调用外部工具,从而更高效、准确地完成复杂任务。

举两个例子:

1)Web搜索工具:

用户提问 “根据评论,最好的咖啡机是什么?”

智能体调用Web搜索工具,显示“正在根据评论搜索咖啡机”。这表明当智能体面对需要实时信息或最新数据的问题时,可以借助Web搜索工具获取相关内容。

2)代码执行工具:

用户提出一个金融计算问题“如果我以7%的复利投资500美元,为期12年,最后我会得到什么?”

智能体通过代码执行工具,编写并执行Python代码来计算结果。这体现了智能体利用代码执行工具进行复杂计算任务的能力。

3,规划(Planning)

将复杂任务分解为可执行的子任务序列,建立动态调整机制。

吴恩达团队提出"树状分解-网状执行"模型,允许在执行过程中根据环境反馈调整计划。

在这里插入图片描述

举个例子:

在这里插入图片描述

规划步骤拆解

  • 姿势确定(Pose Determination):使用openpose模型分析example.jpg 中男孩的姿势,提取关键的姿势信息。这一步是整个任务的基础,通过精确识别原始图像中的姿势,为后续图像生成提供准确的姿势参考。
  • 姿势到图像生成(Pose - to - image):借助google/vit模型,基于上一步确定的姿势信息,生成一张女孩以相同姿势读书的新图像。这个过程将姿势信息转化为具体的视觉内容,实现从姿势描述到图像生成的转换。
  • 图像到文本描述(Image - to - text):运用vit - gpt2模型对新生成的图像进行分析,并以文本形式描述图像内容,即“一个女孩坐在床上读书”。最后可以进一步将文本转换为语音,完成整个任务流程。

规划的意义和价值

  • 任务简化:将一个复杂的多模态任务(图像生成与语音描述结合)拆解为多个相对简单、明确的子任务,降低了任务的处理难度,使智能体能够更清晰地理解和执行每个步骤。
  • 模块化处理:每个子任务可以由专门的模型负责,充分发挥不同模型在各自领域的优势,提高任务执行的准确性和效率。例如openpose专注于姿势识别,google/vit擅长图像生成,vit - gpt2则在图像理解和文本生成方面表现出色。
  • 灵活性和扩展性:这种规划方式使得在面对类似或不同的任务时,可以灵活调整和组合不同的模型和子任务,便于智能体适应多样化的需求,具有较好的扩展性。

4,多智能体协作(Multi-agent collaboration)

构建具备角色分工的Agent集群,通过协商机制实现集体智能。关键突破点在于设计有效的通信协议和冲突解决机制。

角色分工模型

  • 生成者(Generator):负责内容/代码的初步创作
  • 评审者(Reviewer):进行质量检测与漏洞排查
  • 优化者(Optimizer):执行性能调优与格式美化
  • 协调者(Coordinator):管理任务分配与进度监控

这里我们回顾一下文章开头的案例问题

在这里插入图片描述

这个任务是一个 “多人研究工作” ,这里推荐一个工具 微软 Autogen

Agent角色分工:

  • 管理者:负责提出问题
  • 工程师:理解需求,编写代码
  • 科学家:论文的应用领域分类
  • 规划师:提出计划,任务拆解
  • 执行者: 代码执行,发现问题
  • 评论家: 评论结果,提出建议

在这里插入图片描述

我们看一下Agent执行过程的规划:

(工程师和科学家的规划)

1,工程师:编写一个脚本,从arXiv网站爬取上周发布的与LLM(语言模型)应用相关的论文。该脚本应提取论文的标题、作者、摘要和链接。

2,科学家:审查爬取的数据,以确定LLM应用的不同领域。这可以基于标题或摘要中的关键词,或科学家对该领域的了解。

3,工程师:根据科学家识别的领域,修改脚本对论文进行分类。脚本应输出一个Markdown表格,包含领域、标题、作者、摘要和链接(来源URL)的列。

4,科学家:审查Markdown表格,确保论文分类正确且信息准确。检查来源URL以验证信息。

5,工程师:根据科学家的反馈对脚本进行必要的修改

6,科学家:对Markdown表格给出最终批准,确保所有条目都有有效的来源URL。

7,工程师:提交最终的Markdown表格

其中的一些问题:

1,工程师 和 科学家,来回来回非常的啰嗦

– 这里面就要优化每一个智能体(职能提示词),比如 规划师:使用精简流程规划,删除不必要的环节

2,这里面交互过程,需要前一个智能体的回答传入到后面的智能体中,规划链路越长这里面消耗的token越多

– 一个多人研究任务,可能消耗十几万,甚至二十几万token

总结:

重要的一点是,如果你在期待 GPT-5 等更牛逼的大模型,其实你可以现在用 Agent 得到类似的更好的结果。这可能有些争议,但 Agent 确实是一个重要趋势。

到这里吴恩达上了一下价值:

通往人工通用智能的道路,宛如一场旅程而非终点,但我相信,Agent能帮助我们在这条漫长征途上迈出微小而坚实的一步。

下面讲一下他说的漫长的征途发展到哪一步了

三、技术演进趋势(截至2025年4月)

  1. 反思机制升级:通过“自检+外部验证”双通道机制,将LLM的生成能力与外部工具的客观验证结合,既弥补了单一自检的局限性,又降低了依赖人工修正的成本。这一范式在代码生成、事实查证等场景中展现出显著优势。

    例如CRITIC框架:

    在这里插入图片描述

  2. 工具生态扩展:标准化工具市场通过构建类似App Store的生态体系,实现以下突破:

  • 工具动态扩展:允许第三方开发者发布工具(API、代码模块、子Agent),形成可扩展的生态池;

  • 自动发现与调用:Agent根据任务需求,通过语义检索、能力匹配等机制自动调用适配工具;

  • 标准化接口协议:定义统一的工具注册、描述、调用规范(如OpenAPI Schema、Function Call模板)。

    工具调用链路:

    在这里插入图片描述

  1. 规划智能化:结合强化学习实现动态路径优化,其核心在于让智能体在复杂环境中自主学习和调整策略,以协作完成任务并提升成功率。
  • 环境建模:将物理环境抽象为状态空间(如网格地图),定义障碍物、目标点及Agent的初始位置。

  • 联合状态与动作:多Agent系统中,每个Agent需考虑其他Agent的位置信息,形成联合状态(如坐标组合)和联合动作(如移动方向),避免碰撞。

  • 奖励机制:根据动作结果设计奖励函数。例如,到达目标点获得正奖励,碰撞或进入障碍区获得负奖励。

  • Q学习算法:通过无模型的在线Q学习,Agent在“探索-学习-利用”循环中更新Q表(动作价值表),积累历史经验以优化策略。

    Q学习是一种无模型(model-free)、基于价值(value-based) 的强化学习算法,其核心在于构建状态-动作价值函数Q(s,a),通过迭代更新逼近最优策略。

  1. 协作模式创新:在医疗诊断领域催生“人类-Agent混合团队”这一新型工作范式,其核心在于通过人机优势互补实现高效决策。

在医疗诊断中,混合团队通常采用分层协作架构

  • AI Agent层:包括影像分析Agent、病历解析Agent、文献检索Agent等,分别承担数据预处理、模式识别等基础工作;
  • 医生决策层:负责综合AI分析结果与临床经验,制定最终诊疗方案;
  • 交互界面:提供可视化决策支持(如三维手术场景重建),实现人机认知对齐。

在这里插入图片描述

如何学习大模型 AI ?

由于新岗位的生产效率,要优于被取代岗位的生产效率,所以实际上整个社会的生产效率是提升的。

但是具体到个人,只能说是:

“最先掌握AI的人,将会比较晚掌握AI的人有竞争优势”。

这句话,放在计算机、互联网、移动互联网的开局时期,都是一样的道理。

我在一线互联网企业工作十余年里,指导过不少同行后辈。帮助很多人得到了学习和成长。

我意识到有很多经验和知识值得分享给大家,也可以通过我们的能力和经验解答大家在人工智能学习中的很多困惑,所以在工作繁忙的情况下还是坚持各种整理和分享。但苦于知识传播途径有限,很多互联网行业朋友无法获得正确的资料得到学习提升,故此将并将重要的AI大模型资料包括AI大模型入门学习思维导图、精品AI大模型学习书籍手册、视频教程、实战学习等录播视频免费分享出来。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

在这里插入图片描述

为什么要学习大模型?

我国在A大模型领域面临人才短缺,数量与质量均落后于发达国家。2023年,人才缺口已超百万,凸显培养不足。随着AI技术飞速发展,预计到2025年,这一缺口将急剧扩大至400万,严重制约我国AI产业的创新步伐。加强人才培养,优化教育体系,国际合作并进是破解困局、推动AI发展的关键。

在这里插入图片描述

在这里插入图片描述

大模型入门到实战全套学习大礼包

1、大模型系统化学习路线

作为学习AI大模型技术的新手,方向至关重要。 正确的学习路线可以为你节省时间,少走弯路;方向不对,努力白费。这里我给大家准备了一份最科学最系统的学习成长路线图和学习规划,带你从零基础入门到精通!

img


2、大模型学习书籍&文档

学习AI大模型离不开书籍文档,我精选了一系列大模型技术的书籍和学习文档(电子版),它们由领域内的顶尖专家撰写,内容全面、深入、详尽,为你学习大模型提供坚实的理论基础。

在这里插入图片描述

3、AI大模型最新行业报告

2025最新行业报告,针对不同行业的现状、趋势、问题、机会等进行系统地调研和评估,以了解哪些行业更适合引入大模型的技术和应用,以及在哪些方面可以发挥大模型的优势。

img

4、大模型项目实战&配套源码

学以致用,在项目实战中检验和巩固你所学到的知识,同时为你找工作就业和职业发展打下坚实的基础。

img

5、大模型大厂面试真题

面试不仅是技术的较量,更需要充分的准备。在你已经掌握了大模型技术之后,就需要开始准备面试,我精心整理了一份大模型面试题库,涵盖当前面试中可能遇到的各种技术问题,让你在面试中游刃有余

img

适用人群

在这里插入图片描述

第一阶段(10天):初阶应用

该阶段让大家对大模型 AI有一个最前沿的认识,对大模型 AI 的理解超过 95% 的人,可以在相关讨论时发表高级、不跟风、又接地气的见解,别人只会和 AI 聊天,而你能调教 AI,并能用代码将大模型和业务衔接。

  • 大模型 AI 能干什么?
  • 大模型是怎样获得「智能」的?
  • 用好 AI 的核心心法
  • 大模型应用业务架构
  • 大模型应用技术架构
  • 代码示例:向 GPT-3.5 灌入新知识
  • 提示工程的意义和核心思想
  • Prompt 典型构成
  • 指令调优方法论
  • 思维链和思维树
  • Prompt 攻击和防范
第二阶段(30天):高阶应用

该阶段我们正式进入大模型 AI 进阶实战学习,学会构造私有知识库,扩展 AI 的能力。快速开发一个完整的基于 agent 对话机器人。掌握功能最强的大模型开发框架,抓住最新的技术进展,适合 Python 和 JavaScript 程序员。

  • 为什么要做 RAG
  • 搭建一个简单的 ChatPDF
  • 检索的基础概念
  • 什么是向量表示(Embeddings)
  • 向量数据库与向量检索
  • 基于向量检索的 RAG
  • 搭建 RAG 系统的扩展知识
  • 混合检索与 RAG-Fusion 简介
  • 向量模型本地部署
第三阶段(30天):模型训练

恭喜你,如果学到这里,你基本可以找到一份大模型 AI相关的工作,自己也能训练 GPT 了!通过微调,训练自己的垂直大模型,能独立训练开源多模态大模型,掌握更多技术方案。

到此为止,大概2个月的时间。你已经成为了一名“AI小子”。那么你还想往下探索吗?

  • 为什么要做 RAG
  • 什么是模型
  • 什么是模型训练
  • 求解器 & 损失函数简介
  • 小实验2:手写一个简单的神经网络并训练它
  • 什么是训练/预训练/微调/轻量化微调
  • Transformer结构简介
  • 轻量化微调
  • 实验数据集的构建
第四阶段(20天):商业闭环

对全球大模型从性能、吞吐量、成本等方面有一定的认知,可以在云端和本地等多种环境下部署大模型,找到适合自己的项目/创业方向,做一名被 AI 武装的产品经理。

  • 硬件选型
  • 带你了解全球大模型
  • 使用国产大模型服务
  • 搭建 OpenAI 代理
  • 热身:基于阿里云 PAI 部署 Stable Diffusion
  • 在本地计算机运行大模型
  • 大模型的私有化部署
  • 基于 vLLM 部署大模型
  • 案例:如何优雅地在阿里云私有部署开源大模型
  • 部署一套开源 LLM 项目
  • 内容安全
  • 互联网信息服务算法备案

学习是一个过程,只要学习就会有挑战。天道酬勤,你越努力,就会成为越优秀的自己。

如果你能在15天内完成所有的任务,那你堪称天才。然而,如果你能完成 60-70% 的内容,你就已经开始具备成为一名大模型 AI 的正确特征了。

这份完整版的大模型 AI 学习资料已经上传CSDN,朋友们如果需要可以微信扫描下方CSDN官方认证二维码免费领取【保证100%免费

https://img-blog.csdnimg.cn/img_convert/05840567e2912bcdcdda7b15cba33d93.jpeg

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值