球面坐标系转换为笛卡尔坐标系

今天又遇到了球面坐标系转换成笛卡尔坐标系,其实是一个很简单的问题,记录一下以便以后查看。

在这里插入图片描述
假设球面坐标系中的P点坐标为(r, θ \theta θ, φ \varphi φ)有时候球面坐标系中的三个坐标会使用另一种方式表达:

r:无疑就是球体的半径
θ \theta θ:称为倾斜角(inclination)
φ \varphi φ:称为方位角(azimuth)

将球体坐标系转换为笛卡尔坐标系(也就是常见的xyz坐标系):
x=rsin( θ \theta θ)cos( φ \varphi φ
y=r
sin( θ \theta θ)sin( φ \varphi φ
z=r*cos( θ \theta θ

用C#代码写出来:

    public Vector3 ToCartesian()
    {
        Vector3 cartesian = new Vector3();
        cartesian.z = radius * Mathf.Sin(inclination) * Mathf.Cos(azimuth);
        cartesian.x = radius * Mathf.Sin(inclination) * Mathf.Sin(azimuth);
        cartesian.y = radius * Mathf.Cos(inclination);
        return cartesian;
    }
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值