题目大意
给定a,b,c<=2000,求 ∑ai=1∑bj=1∑ck=1d(ijk) ,其中 d(n)表示n的因子数量
分析
嗯…题解给出一种鬼畜的解法,它事实上是能过的,我还不知道怎么分析复杂度。
我们知道d()是积性函数嘛,那么我们从大到小考虑质数,记忆化搜索。设f(a,b,c,pt)表示考虑到第pt个质数,三个循环的上界为a,b,c的式子的值。那么很显然
f(a,b,c,pt)=∑f(apri[pt]x,bpri[pt]y,cpri[pt]z,pt−1)∗(x+y+z+1)
。然后用哈希存一下就过了…
注意边界条件,当pt到达0,说明所有的质数都考虑过了,那么我们返回1即可,因为即使上界不为1,那些数我们也取不了,因为所有质数都考虑过了。
用map超时,考试千万不要乱用…
另外有两种做法,一种是反演,一种是定理。
代码
#include<cstdio>
#include<algorithm>
#include<cmath>
#include<cstring>
#include<set>
#include<map>
#include<bitset>
using namespace std;
#define fo(i,j,k) for(i=j;i<=k;i++)
#define fd(i,j,k) for(i=j;i>=k;i--)
#define cmax(a,b) (a=(a>b)?a:b)
typedef long long ll;
typedef double db;
const int N=2e3+5,mo=1<<30,lim=10000000+5;
int pd[N],phi[N],pri[N],a,b,c,i,j,kan,tr[lim+5];
ll feat[lim+5];
void predo()
{
int n=max(a,max(b,c)),t;
fo(i,2,n)
{
if (!pd[i])
{
pri[++pri[0]]=i;
phi[i]=i-1;
}
fo(j,1,pri[0])
{
if (1ll*pri[j]*i>n) break;
t=pri[j]*i;
pd[t]=1;
phi[t]=phi[i]*phi[pri[j]];
if (i%pri[j]==0)
phi[t]=phi[i]*pri[j];
}
}
}
ll hash(int a,int b,int c,int pt)
{
ll tp=1ll*a*2001*2001*2001+1ll*b*2001*2001+c*2001+pt;
int k=tp%lim;
while (tr[k]&&feat[k]!=tp) k=(k+1)%lim;
if (!tr[k]) feat[k]=tp;
return k;
}
int dfs(int a,int b,int c,int pt)
{
//edge
if (b<a) swap(a,b);if (c<a) swap(a,c);if (c<b) swap(b,c);
if (tr[kan=hash(a,b,c,pt)]) return tr[kan];
if (!pt) return 1;
int d=pri[pt],na=a,nb,nc,i,j,k,ret=0;
fo(i,0,20)
{
if (!na) break;
nb=b;
fo(j,0,20)
{
if (!nb) break;
nc=c;
fo(k,0,20)
{
if (!nc) break;
ret=(ret+1ll*dfs(na,nb,nc,pt-1)*(i+j+k+1))%mo;
nc/=d;
}
nb/=d;
}
na/=d;
}
tr[hash(a,b,c,pt)]=ret;
return ret;
}
int main()
{
freopen("data.in","r",stdin);
//freopen("data.out","w",stdout);
scanf("%d %d %d",&a,&b,&c);
predo();
// tr[trans(1,1,1,0)]=1;
printf("%d",dfs(a,b,c,pri[0]));
}