论文:Dispersion relation prediction and structure inverse design of elastic metamaterials via deep learning
DOI:https://doi.org/10.1016/j.mtphys.2022.100616
1、摘要
精心设计的超材料结构给予前所未有的性能,保证了各种各样的具体应用。传统的方法通常依赖于在研究人员的经验和优化算法的帮助下,在广阔的设计空间中进行迭代搜索,以获得具有所需性能的结构。在这里,使用深度学习方法建立弹性超材料的结构拓扑和色散关系之间的映射。我们的研究结果表明,该模型能够准确预测的色散关系为一个给定的结构和逆设计的近最佳结构的基础上的目标色散关系。此外,对于逆设计过程,输入色散关系可以主动定制。我们基于深度学习的方法已经显示出加速设计和优化过程的能力,为超材料研究的新突破铺平了道路。
2、主要研究
在这里,开发了一个基于数据驱动方法的系统框架来应对这些挑战。聚焦于二维(2D)弹性超材料结构,在具有高自由度的设计空间中构建数据集。卷积神经网络(CNN)和条件生成对抗网络(cGAN)分别用于从正向和反向桥接结构和属性。表明,该框架实现了一个给定的结构配置和主动设计的近最佳结构的基础上的目标色散关系的色散关系的准确预测。数据驱动和传统方法的整合和协同可以加速超材料结构设计,性能优化和机理揭示的进展。
3、技术路线
4、研究方法
4.1 样本结构生成
遵循p4m对称性的晶胞结构
为了确保生成的结构的对称性,在基本区域执行膨胀操作(