基于YOLOv8深度学习的计算机视觉红外弱小目标检测系统

随着无人机、飞机、导弹等高动态目标在军事与安防领域的应用,红外弱小目标的检测已成为计算机视觉领域的重要研究方向。红外弱小目标通常由于与背景的对比度低、尺寸较小以及热辐射较弱,导致在传统目标检测算法中检测效果不佳。为了解决这一问题,本研究提出了一种基于YOLOv8(You Only Look Once version 8)深度学习算法的红外弱小目标检测系统。

该系统集成了PyQt5图形用户界面(GUI),使用户能够方便地加载数据集、训练模型、进行目标检测,并实时展示检测结果。系统使用了大规模的红外弱小目标数据集,基于YOLOv8架构进行模型训练和优化,充分利用其高效的卷积神经网络结构,实现了高精度、低延迟的目标检测。

本文首先介绍了红外弱小目标检测的背景与挑战,分析了YOLOv8在小目标检测中的优势,并详细阐述了数据预处理、模型训练、优化及评估的过程。实验结果表明,基于YOLOv8的模型在红外弱小目标检测任务中,相较于传统方法,具有更好的性能,能够有效提升小目标的检测精度。

本系统不仅为红外弱小目标的检测提供了一个高效的解决方案,还提供了一个简洁易用的界面,方便研究人员和工程师进行实验和应用。最后,本文总结了当前方法的局限性,并提出了未来可能的改进方向。

算法流程

Tipps:深入解析项目的算法流程,逐步探索技术实现的核心逻辑。从数据加载与预处理开始,到核心算法的设计与优化,再到结果的可视化呈现,每一步都将以清晰的结构和简洁的语言展现,揭示技术背后的原理与实现思路。

通过搜集关于数据集为各种各样的红外弱小目标相关图像,并使用Labelimg标注工具对每张图片进行标注,分4检测类别,是’飞机’, ‘鸟’, ‘无人机’, ‘直升机’。

目标检测标注工具
(1)labelimg:开源的图像标注工具,标签可用于分类和目标检测,它是用python写的,并使用Qt作为其图形界面,简单好用(虽然是英文版的)。其注释以 PASCAL VOC格式保存为XML文件,这是ImageNet使用的格式。此外,它还支持 COCO数据集格式。
(2)安装labelimg 在cmd输入以下命令 pip install labelimg -i https://pypi.tuna.tsinghua.edu.cn/simple

结束后,在cmd中输入labelimg

初识labelimg

打开后,我们自己设置一下

在View中勾选Auto Save mode

接下来我们打开需要标注的图片文件夹

并设置标注文件保存的目录(上图中的Change Save Dir)
接下来就开始标注,画框,标记目标的label,然后d切换到下一张继续标注,不断重复重复。

Labelimg的快捷键

(3)数据准备
这里建议新建一个名为data的文件夹(这个是约定俗成,不这么做也行),里面创建一个名为images的文件夹存放我们需要打标签的图片文件;再创建一个名为labels存放标注的标签文件;最后创建一个名为 classes.txt 的txt文件来存放所要标注的类别名称。

data的目录结构如下:
│─img_data
│─images 存放需要打标签的图片文件
│─labels 存放标注的标签文件
└ classes.txt 定义自己要标注的所有类别(这个文件可有可无,但是在我们定义类别比较多的时候,最好有这个创建一个这样的txt文件来存放类别)

首先在images这个文件夹放置待标注的图片。
生成文件如下:

“classes.txt”定义了你的 YOLO 标签所引用的类名列表。

(4)YOLO模式创建标签的样式

存放标签信息的文件的文件名为与图片名相同,内容由N行5列数据组成。
每一行代表标注的一个目标,通常包括五个数据,从左到右依次为:类别id、x_center、y_center、width、height。
其中:
–x类别id代表标注目标的类别;
–x_center和y_center代表标注框的相对中心坐标;
–xwidth和height代表标注框的相对宽和高。

注意:这里的中心点坐标、宽和高都是相对数据!!!

存放标签类别的文件的文件名为classes.txt (固定不变),用于存放创建的标签类别。

完成后可进行后续的yolo训练方面的操作。

硬件环境

我们使用的是两种硬件平台配置进行系统调试和训练:
(1)外星人 Al

### 使用YOLO进行红外目标检测的算法和技术 #### 红外图像的特点及其挑战 红外成像技术能够捕捉物体发出的热辐射,这使得即使在低光照条件下也能获得清晰的目标图像。然而,由于红外图像通常具有较低的空间分辨率和对比度,这对基于视觉的目标检测提出了更高的要求[^1]。 #### YOLO模型简介 You Only Look Once (YOLO) 是一种实时对象检测框架,它将输入图片划分为网格,并预测每个网格单元中的边界框以及这些框内所含类别的概率分布。该方法以其快速的速度而闻名,在多种应用场景下表现出良好的性能。 #### 针对红外数据集调整YOLO网络结构 为了适应红外光谱特性并提高检测精度,可以考虑以下几种改进措施: - **预处理增强**:采用特定于红外影像的数据增强策略来扩充训练样本数量,比如随机裁剪、翻转等操作;还可以通过直方图均衡化等方式改善图像质量。 - **特征提取优化**:引入更深更宽的基础卷积层以捕获更多细节信息;利用迁移学习的思想从可见光域下的大规模预训练权重初始化参数,从而加速收敛过程并减少过拟合风险。 - **损失函数定制**:设计适合红外场景的任务导向型损失项,如加入位置敏感惩罚因子使模型更加关注难以区分的小尺寸或遮挡严重的实例。 ```python import torch.nn as nn class InfraredYOLO(nn.Module): def __init__(self, num_classes=80): super(InfraredYOLO, self).__init__() # 定义基础卷积层和其他组件... def forward(self, x): ... ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值