Social Influence Attentive Neural Network for Friend-Enhanced Recommendation

摘要:

随着在线社交网络的蓬勃发展,在许多社交应用中出现了一种新的推荐场景,即朋友增强推荐 (FER)。在FER中,推荐用户使用其朋友(称为朋友推荐圈)喜欢/共享的物品。这些朋友的推荐会被显式地显示给用户。与传统的卷积社交推荐不同,FER中独特的朋友推荐圈可能会显著改变推荐范例,使用户更加关注增强的社交因素。在本文中,我们首先提出FER问题,并提出一种新的社交影响注意力神经网络(SIAN)解决方案。为了融合丰富的异构信息,在SIAN中设计了注意力特征聚合器来学习节点级和类型级的用户和物品表示。更重要的是,我们提出了一个社交影响耦合器,以注意力的方式捕捉朋友推荐圈的影响力。实验结果表明,在三个真实数据集上,SIAN的性能优于几个最先进的基线。代码和数据集在https://github.com/rootlu/SIAN可获取到。

如今,随着在线社交网络的蓬勃发展,人们更愿意在社交平台上主动表达自己的观点,与朋友分享信息。朋友成为重要的信息来源和高质量的信息过滤器。朋友间互动过的东西(分享、点赞等)对用户有很大的影响,很可能成为用户未来的兴趣。有许多推荐系统关注朋友的社交影响(如YouTube上的feed和微信上的Top Stories)。一些社交推荐算法也考虑了社交因素来进行个性化推荐。推荐中社交影响力的巨大成功给我们留下了深刻的印象,我们提出了一个新颖的设想,叫做朋友增强推荐(FER),这增加了朋友在社交推荐中的影响力。FER与经典的社交推荐有两个主要区别:(1)FER只向用户推荐他/她的朋友与他/她有过互动的内容,将朋友视为高质量的信息过滤器,提供更多高质量的物品。(2)所有与该推荐物品互动过的好友都被显式地展示给与该推荐物品相关的用户,凸显了显式的社交因素的关键重要性,提高了用户行为的可解释性。

近年来,FER系统蓬勃发展,已被数以亿计的用户广泛使用。图1给出了现实世界FER的典型说明。对于每个用户-物品对,FER显式地展示了与物品交互的朋友集,该物品被定义为用户对物品的朋友推荐圈(FRC)。例如,Jerry对AirPods的文章的FRC是{Tom, Lily, Jack}。这样一个FRC大大突出了朋友的社交影响和他们的角色,这使得FER更加复杂和相关。与传统的社交推荐相比,它甚至改变了推荐范式。以图1为例,在经典的社会推荐中,Jerry并不知道FRC(并没有显示给他),因此他可能会根据自己的兴趣去阅读一篇文章。然而,在我们的FER中,除了物品本身的吸引力,朋友的影响可能是点击的主要原因。Jerry点击这篇关于AirPods的文章,更有可能的原因是Tom(一个技术专家朋友)读过它。也完全有可能是Jerry读了关于迪斯尼乐园的文章,是因为他的妻子莉莉读了它。此外,当文章有关于技术时,专家和技术的连接对Jerry的影响可能比他的配偶和技术的连接更大,而相反的情况可能发生在w.r.t.娱乐。因此,在FER中,用户点击的原因有很多。用户点击一篇文章的原因可能来自(1)他对物品内容(item)的兴趣,(2)专业的推荐(item-friend组合),甚至(3)他对朋友本身(friend)的关注。在FER中,用户倾向于看他们的朋友读过什么,而不仅仅是查看他们自己感兴趣的内容。甚至可以说,社交推荐的重点是将社交信息引入更好的推荐物品,而FER的目标是推荐和朋友推荐的物品的结合。

在这里插入图片描述
图1所示。这是好友增强推荐的典型例子。左边显示的是,Jerry被推荐了两篇文章,下面显示的是朋友Tom与这些文章有过互动(分享、喜欢等)。右边显示了FER问题的形式化,只有朋友推荐的物品将被推荐,与该物品互动的朋友将显式的展示给用户。

显式的FRC作为信息交换的关键特征,带来了两个挑战:
(1)如何从多方面的异构因素中提取关键信息?FER涉及多种异质因素,如物品内容、朋友推荐和他们的互动。这些因素的影响在不同的场景中会因用户、物品和好友推荐的不同组合而有所不同。FER更具挑战性,因为它不仅需要了解用户对物品的偏好,还需要预测用户对不同因素的关注程度。
(2)如何利用显式的朋友推荐信息?显式的朋友推荐非常强调社会信息在推荐中的重要性,这在FER中是至关重要的。然而,很少有研究探索FRCs在现实推荐中的性能和特点。为了充分利用FER中显式的朋友推荐信息,需要一个深思熟虑的策略。

为了解决这些问题,我们提出了一种新的社交影响注意力神经网络(SIAN)。具体地,我们将FER定义为异构社交图上的用户-物品交互预测任务,它灵活地整合了异构对象及其交互中的丰富信息。首先,我们设计了一个注意力特性聚合器,它具有节点级和类型级聚合,以学习用户和物品表示,而不局限于之前一些工作中预先定义的元路径。接下来,我们实现一个社交影耦合器来模拟通过明确的朋友推荐圈的耦合影响扩散,它结合了多个因素(如朋友和物品)的影响与关注机制。总之,SIAN捕捉了FER中有价值的多方面因素,成功地从异构图和朋友推荐圈中提取出用户最基本的偏好。在实验中,在三个大型真实数据集上,SIAN在多个指标上显著优于所有竞争基线。对注意力聚合和社交影响的进一步定量分析也揭示了令人印象深刻的社交学发现。我们的贡献总结如下:

  • 我们是第一个研究被广泛采用的名为好友增强推荐(FER)的推荐场景的人,在这种场景中,好友推荐被附加到物品中,并明确地向用户公开。
  • 我们提出了一种新的面向FER的社交影响注意力神经网络(SIAN)。它使用了一个新的特征聚合器来提取有用的多方面信息,并利用社会影响耦合器来判断不同的朋友推荐的重要性。
  • 在三个真实数据集上的实验验证了该算法的有效性和鲁棒性。进一步的定量分析也揭示了有价值的社会学模式,反映了当社交影响变得更加显著时,用户行为的变化和可解释性。
  1. 准备工作

定义1, 异构社交图(HSG)。异构社交图表示为G=(V,E),其中V= V U V_U VU V I V_I VI ε \varepsilon ε= ε F \varepsilon_F εF ε R \varepsilon_R εR是节点集和边集。这里的 V U V_U VU V I V_I VI是用户和物品的集合。对于u,v∈ V U V_U VU,<u, v> ∈ ε F \varepsilon_F εF代表了用户之间的友谊。对于u∈ V U V_U VU和i∈ V I V_I VI,<u, i> ∈ ε R \varepsilon_R εR是u和i之间的交互关系。

通过添加属性特征或链路关系来扩展异构信息网络(HIN)并不困难。图1显示了一个包含{User, Article, Media}三种节点类型和{User-User, User-Article, User-Media, Article-Media}多重关系的HSG。

定义2。朋友推荐圈(FRC)。给定一个HSG G=(V, ε \varepsilon ε),我们定义了用户的朋友推荐圈。无交互物品i,即, u i u_i ui不∈ ε R \varepsilon_R εR),如 C u C_u Cu(i)={v|<u,v>∈ ε F \varepsilon_F εF ∩ <v, i>∈ ε R \varepsilon_R εR}。这里的v是用户u的一个有影响力的朋友。

以图1为例,Jerry w.r.t.关于AirPods的无互动文章的朋友推荐圈为{Tom, Lily, Jack},而关于Disneyland的文章的FRC为CJerry(Disneyland) = {Will, Tom, Lily}。

定义3。朋友增强的推荐(FER)。给定一个用户的HSG G=(V, ε \varepsilon ε)和FRC C u ( i ) C_u(i) Cu(i)。一个非交互的物品i,FER旨在预测用户u是否对物品i有潜在的偏好。即,将学习一个预测函数 y u i y_{ui} yui=F(G,Cu(i);Θ),其中 y u i y_{ui} yui是用户u与物品i交互的概率,Θ是模型参数。

  1. 提出的模型
    3.1. 模型概述
    在这里插入图片描述
    图2所示。SIAN的整体架构。注意力特征聚合器分层地聚合具有节点级和类型级注意力的异构邻居特征,并输出用户和物品的表示(如, h u h_u hu h i h_i hi)。社交影响耦合器将每个有影响力的朋友的影响和物品结合在一起,将显式的社交影响编码到表示中(即 h u i h_{ui} hui)。

如图2所示,SIAN用HSG对FER进行建模。除了用户和物品表示(例如,Jerry的 h u h_u hu和 Disneyland的 h i h_i hi),SIAN通过将每个有影响力的朋友(例如,Tom)的物品结合起来,学习社交影响表示(例如, h u i h_{ui} hui)。他们共同负责预测用户u和物品i之间的交互概率 { y u i ^ \hat{\{y_{ui}} {yui^

首先,每个用户或物品节点都配备了一个节点和类型级聚合的注意力特征聚合器,旨在开发多方面的信息。在节点级,来自相同类型邻居的特征(例如,Jerry喜欢的文章)将聚合在当前类型空间中;在类型级,来自不同类型空间的表示将进一步聚合以编码多方面的信息。在每一个级别上,都有一个注意力机制被用来区分和捕获邻居和类型的潜在相关性。这种分层的注意力设计使SIAN能够对多方面信息的细粒度相关性进行编码,而双重的注意力机制使其能够微妙地捕捉不同因素的影响。与以前的一些工作不同,SIAN不需要手动选择元路径,因此预期它会产生更好的性能。

第二,一个有影响力的朋友(如Tom)和一个物品(如迪士尼乐园的文章)的影响被一个社会影响耦合器共同捕获,它量化了他们的耦合影响的程度。来自FRC的多个耦合影响然后通过注意力传播组合,以获得整体影响的表示(即,hc)。通过学习到的用户、物品和影响表示,SIAN预测了用户u(如Jerry)与物品i(如Disneyland文章)交互的可能性 { y u i ^ \hat{\{y_{ui}} {yui^

3.2 注意力特征聚合器

给定一个HSG G={V, ε \varepsilon ε},注意力特征聚合器旨在学习用户和物品表示(即, h u h_u hu h i h_i hi,u,i∈V)。考虑到相同类型的不同邻居对特征聚合的贡献可能不相等,并且不同类型需要多方面的信息,我们设计了一个分层的节点级和类型级注意力聚合。节点级聚合以细粒度的方式分别建模用户/物品特征,而类型级聚合捕获异构信息。

节点级的注意力聚合
正式上,给定用户u,让Nu=Nt1u∪Nt2u∪···∪Nt|T|u表示他/她的邻居,这是|T|类型邻居集的并集。对于t∈T类型的邻居(即Ntu),我们将t类型空间中的聚合表示为以下函数:

在这里插入图片描述
其中 p u t p_u^t put R d × d R ^{d×d} Rd×d 是t类型空间中用户u的聚合嵌入。 x k x_k xk R d R ^d Rd是邻居k的初始嵌入,它是随机初始化的。这里的 W p W_p Wp R d × d R ^{d×d} Rd×d b p b_p bp R d R ^d Rd是神经网络的权重和偏差。 α k u α_{ku} αku是邻域k对u的特征聚合的注意力贡献。

在这里插入图片描述
其中,f(·)是一个用ReLu激活的两层神经网络,⊕表示连接操作。显然, α k u α_{ku} αku越大,邻域k对用户u的特征聚合的贡献就越大。
给定多种类型的邻域,我们可以在不同类型的空间中为u获得多个嵌入,表示为{pt1u、···、pt|T|u}。

类型级的注意力聚合。
直观地说,不同类型的邻居表示信息的各个方面,而一个节点可能对多个方面有不同的偏好。给定用户u及其不同类型空间中的节点级聚合嵌入,我们将它们聚合如下:
在这里插入图片描述
其中 h u h_u hu R d R ^d Rd是用户u的潜在表示。{ W h W_h Wh R d × d R ^{d×d} Rd×d b h b_h bh R d R ^d Rd}是一个神经网络的参数。 β t u β_{tu} βtu是用户u在类型级t的特征聚合中的注意力偏好。用户u的特征聚合中,因为各种类型的邻居包含多方面的信息,并被期望相互协作。对于用户u,我们连接所有邻域类型的聚合表示,并定义以下权重:
在这里插入图片描述

其中 a t a_t at R ∣ T ∣ R^{|T|} RT是所有用户共享的类型-感知的注意力向量。公式(4),不同邻接类型的连接为用户捕获多方面的信息, a t a_t at编码每种类型的全局偏好。

类似地,对于每个物品i,注意力特征聚合器将i的邻居作为输入,并输出i的潜在表示,表示为 h i h_i hi

3.3 社交影响耦合器

为了利用FRCs和捕获有影响力的朋友的影响,我们提出了一个社交 影响耦合器。首先将有影响力的朋友和物品对社交行为的不同影响耦合在一起,然后我们用心地在FRC中表示了整体影响。

耦合的影响表示。
在[7]之后,人类的行为受到各种因素的影响。在FER中,你是否与i互动并不仅仅取决于物品本身或好友。更有可能的是,好友和物品的同时出现会产生重大影响。正如前面的例子(图1)所示,当它与技术相关时,专家(如Tom)和物品(如AirPods)之间的耦合比配偶和技术物品之间的耦合影响更大,但与娱乐相关的物品可能会发生相反的情况。因此,给定用户u、物品i和FRC Cu(i),我们将每个朋友v∈ C u ( i ) C_{u(i)} Cu(i)和物品的影响耦合如下:
在这里插入图片描述
其中 h v h_v hv h i h_i hi是用户v和物品i的聚合表示。φ(·,·)作为融合函数,可以是元素方面的点乘或连接(这里我们采用连接)。σ是ReLU函数。显然,等式(5)结合了物品i和有影响力的朋友v的特征,捕捉到了两者的影响。

注意力影响度

利用耦合影响表示c<v,i>,我们的下一个目标是获得用户u上的c<v,i>影响度。由于影响分数取决于用户u,我们将用户u的表示(即h_u)纳入由{w1、w2、b1、b2}参数化的两层神经网络的 影响分数计算中:
在这里插入图片描述
然后,通过归一化 d u ← < h , v > d_{u←<h,v>} du<h,v>,得到注意力影响度,可解释为影响好友v对用户行为的影响:
在这里插入图片描述
由于朋友的影响是由FRC传播的,我们专注总结有影响力的朋友和物品v对用户u的耦合影响:
在这里插入图片描述
作为耦合影响表示c<v,i>,将有影响力的朋友和项目的潜在因素融合在一起,等式(8)保证了他们之间传播的社交影响可以被编码到潜在表示 h u i h_{ui} hui中。

3.4行为预测与模型学习
利用用户、物品的表示,以及耦合影响(即 h u h_u hu h i h_i hi h u i h_{ui} hui),将它们连接起来,送入两层神经网络中:
在这里插入图片描述然后,通过一个带有权重向量 w y w_y wy和偏秩 b y b_y by的回归层,得到用户-物品对的预测概率:
在这里插入图片描述
最后,为了估计SIAN的模型参数Θ,我们对以下交叉熵损失进行了优化,其中 y u i y_{ui} yui为真实值, λ为减少过拟合的L2-正则化参数:
在这里插入图片描述
4 实验

我们在三个真实世界数据集上进行了综合实验,展示了优越的性能,并揭示了有趣的社会学模式。

4.1 数据集
Yelp和豆瓣是广泛应用于推荐的经典开放数据集,我们为每个用户-物品对构建FRCs来模拟FER场景。FWD从已部署的实时FER系统中提取,并向用户显示真实的FRCs。数据集的详细统计如表1所示。
在这里插入图片描述

  • Yelp是一个包含互动和社交关系的商业评论数据集。我们首先对一组用户进行抽样。对于每个用户u,我们基于给定的用户-用户关系和用户-物品交互构造了一组FRCs。从数据中过滤与空的FRC的交互。为了得到一个节点的初始特征向量,我们使用word2vec学习单词嵌入,并对每个用户或项目的向量进行平均。
  • 豆瓣是一个与分享书籍相关的社交网络,包括用户之间的友谊,用户与物品之间的互动记录。正如为Yelp所做的预处理过程一样,我们基于给定的用户-用户关系和用户-物品交互构造了一组FRCs。我们将图书描述和用户评论作为word2vec的输入,然后输出图书和用户的特征向量。我们预测用户与图书之间的交互概率。
  • Friends Watching Data (FWD)是从真实世界的实时FER系统WeChat Top Stories中提取的,其中FRCs被显式展示。基于FWD,我们构建了一个包含近313000个节点和1200万条边的HSG。每个用户或物品都与一些给定的特性(例如,年龄或内容向量)相关联。我们预测用户与文章之间的交互概率。

4.2 实验的设置

基线:我们将所提出的SIAN与四种方法进行了比较,,包括 特征/基于结构的方法(例如,MLP,DeepWalk, node2vec和metapath2vec),融合功能/基于结构的方法(例如,DeepWalk+fea,
node2vec+fea and metapath2vec+fea),图神经网络方法(即, GCN,
GAT 和 HAN)和社会推荐方法(例如,TrustMF和DiffNet)。

  • MLP[10]是最简单的基线,与SIAN中的预测层采用相同的架构实现。将用户与物品的特征向量连接作为输入,输出交互的预测概率。这里我们用{32,64}改变特征向量的大小。

  • DeepWalk, node2vec和metapath2vec。DeepWalk[12]和node2vec[5]是两种同构的网络嵌入方法。Metapath2vec[3]是一种基于元路径[15]的异构网络嵌入方法。这里我们采用小于4的元路径并报告最佳性能。我们将用户和物品的嵌入信息输入一个逻辑回归分类器来预测交互的概率。这里也采用了与SIAN一样的MLP,但性能较差。因此,我们在这里使用逻辑回归。

  • DeepWalk+fea, node2vec+fea和metapath2vec+fea。通过学习到的嵌入,我们进一步分别将其与用户和物品的特征进行连接,并使用logistic回归对性能进行评估,得到DeepWalk+fea、node2vec+fea和metapath2vec+fea。

  • GCN, GAT和HAN。GCN[9]和GAT[17]是针对同构图设计的图卷积网络,HAN[19]是针对异构图设计的图卷积网络。这些方法将节点特性作为节点嵌入的输入和输出。我们学习用户和物品的嵌入,然后根据上述方法预测交互的概率。我们测试时在HAN中使用与metapath2vec使用的相同元路径,并报告了最佳性能。

  • TrustMF[22]分解社交信任网络并将用户映射到两个空间。这里我们使用它来学习用户和物品的嵌入。然后,我们利用上述方法预测相互作用的概率。

  • DiffNet[20]是一种以社交关系为输入,增强用户嵌入性的社交推荐方法。我们通过使用sigmoid函数修改输出层来学习用户-物品交互的概率。

参数设置。对于每个数据集,训练、验证和测试集的比例为7:1:2。我们采用Adam优化器[8]和PyTorch实现。通过优化验证集上的AUC(模型评估指标),使用网格搜索[1]将学习率、批大小和正则化参数设置为0.001、1024和0.0005。对于基于基线的随机漫步,我们将漫步数、漫步长度和窗口大小分别设置为10、50和5。对于基于图神经网络的方法,层数设置为2。对于DiffNet,我们将正则化参数设置为0.001。深度参数设置为2,与[20]中的建议一致。对于基线的其他参数,我们在文献指导下进行了经验优化。最后,对于除MLP之外的所有方法,我们将特征向量的大小设置为64,并报告在不同嵌入维度{32,64}下的性能。

4.3 实验结果

我们采用三个广泛使用的指标AUC, F1和Accuracy来评估性能。表2报告了潜在表示维度的结果,从中我们有以下发现。

(1)在3个数据集上,经过配对t-test,SIAN在所有指标上都优于所有基线,且具有统计学意义(p < 0.01)。结果表明,SIAN可以很好地从FER的多个方面捕捉用户的核心问题。这些改进来自于从节点和类级的注意力聚合中生成的高质量节点表示,以及挖掘出用户社交倾向的社会影响耦合器。此外,在不同维度上的相同改进验证了SIAN对维度的鲁棒性。

(2)与图神经网络方法相比,SIAN方法的显著改进证明了节点级和类级注意力聚合的有效性。特别是,SIAN的性能优于同样针对异构图设计的两层聚合的HAN。这是因为SIAN中的类级注意力聚合可以捕获多个方面的异构信息,而不受HAN中使用的预定义元路径的限制。此外,这些改进也表明了我们的社交影响耦合器在FER中的重要性。

(3)社交推荐基线也取得了良好的绩效,进一步证实了社交影响在FER中的重要性。与只把社会关系作为次要信息的基线相比,改进的性能提升意味着朋友推荐因素可能在FER中占据主导地位,这应该被详细建模。特别是,我们的SIAN取得了最好的表现,再次证实了我们的社交影响耦合器在编码不同的社会因素FER的能力。

在这里插入图片描述
在这里插入图片描述

4.4多方面信息的影响

在注意力特征聚合器中,每个节点嵌入是从其具有不同权重的不同类型邻居中聚合而来的。我们通过发现所有实例的平均类型注意力值(即Eq.(4)中的β)来调查异质因素(如朋友、物品、媒体)的贡献。

如图3所示,Friend类型的平均注意值显著大于其他类型。也许令人惊讶的是,该模型更加关注用户的社交关系,这与传统的推荐模式截然不同,传统的推荐模式认为用户与物品的互动更为重要。这也证明了所提出的SIAN中的社会影响耦合器在从FRCs中提取偏好方面发挥了重要作用。

在这里插入图片描述

4.5 FER的社交影响分析

我们已经证实了FRC是FER中最重要的因素。然而,朋友可能从不同方面影响用户(例如相似性)影响用户。接下来,我们将展示不同的用户属性如何影响FER中的用户行为。由于我们在前面中有详细的用户属性,在这里我们对它进行分析。

评估协议。
社交影响耦合器中的注意力反映了不同朋友的重要性。我们假设朋友v具有最高的注意力价值(即, 在 等 式 ( 6 ) 中 d u ← < h , v > 在等式(6)中d_{u←<h,v>} 6)du<h,v>,是最有影响力的朋友。v的所有属性值都被同等地视为对该影响的贡献。给定一个用户属性和一个用户组,我们通过计算用户组中所有朋友的FRCs属性值来定义背景分布,通过计算用户组中最具影响力的朋友的属性值来定义影响力分布。因此,背景分布代表了该用户组的一般朋友的特征,而影响力分布则代表了该用户组中最有影响力的朋友的特征。如果这两种分布完全一致,那么这一属性就不是影响这一用户群体的关键社会因素。相比之下,这两种分布的差异意味着这个属性是一个关键的社交因素,以及它的不同价值如何影响用户行为。

结果和分析。
如图4所示,我们发现:
(1)在图4(a)中,我们观察到用户行为更容易受到更权威的朋友的影响,无论用户自己拥有什么样的权威。在所有三个不同权威的用户群体中,高权威用户在影响力分布中的比例大于背景分布中的比例。例如,在中权威用户组中,最上面的红色块(高权威影响力)大于最上面的蓝色块(高权威背景),高权威朋友对中权威用户的影响力更大。(((自我理解:纵向比较,在两个分布中,高权威占的比例大,说明高权威的人对中权威的人影响力大。横向比较,最上面的红色块(高权威影响力)大于最上面的蓝色块(高权威背景)比例大,说明,影响力分布比北京分布分布更能代表用户受的影响)))。这个结果并不奇怪,因为用户通常更易受权威人士影响,符合常识。它还揭示了FER中一个有趣的现象,有时用户更关注他们的老板或社会权威者喜欢什么,而不是他们真正喜欢什么。

(2)我们对其他用户属性的影响进行了分析。我们发现,用户很容易受到与自己相似的朋友的影响。从图4(b)可以看出,人们更喜欢同伴推荐的物品,尤其是年轻人和老年人;同时,从图4©和(d)可以看出,用户倾向于观看同性别、同地点的朋友推荐的文章。基于用户相似度的推荐在协同过滤中被广泛采用,即使是在FER中也是经典的推荐方法。

综上所述,虽然不同的社交因素对目标用户有不同的影响,但他们中没有一个是主导因素,这进一步确立了FER的复杂性。在这种情况下,SIAN的改进表明,它可以很好地捕获FER中多方面的社交因素,这可能有助于理解可解释的推荐。

在这里插入图片描述
图4所示。社交影响分析用户属性。对于每个属性和用户组(如(a)中的权威和低权威组),左边为影响分布,右边为背景分布。在每个条中,每个不同颜色段的高度表示属性值在影响或背景分布中的比例。

4.6 参数分析
我们的SIAN包含两个参数,即嵌入维度d∈{32,64}和Eq.(11)中的L2 -正则化参数λ。正如我们在4.3节中报告的模型性能,这里我们在{0,0.0001,0.0005,0.001,0.005}集合中改变λ来分析其对模型性能的影响。如图5所示,在λ = 0.0005附近得到最优性能,说明λ不能设置过小或过大以防止过拟合和欠拟合。
在这里插入图片描述
5. 相关工作
社会的建议。随着社交媒体的蓬勃发展,可以利用丰富的社交信息来提高推荐性能[2,6,11,13,21],这推动了社交推荐的出现。SoRec[11]提出了一种概率矩阵分解模型,将协同过滤与社会信息相结合。[6]将信任影响合并到SVD++的顶部,,它以社会邻居的偏好作为边信息。TrustMF[22]分解社会信任网络,将用户映射到两个低维空间:信任空间和被信任空间。不同于这些方法仅仅将社会邻居作为边信息,SIAN基于独特的FRC公式将社会信息建模为一等公民。

  1. 总结
    本文首先提出了一种广泛应用于许多社交应用的好友增强推荐问题,并提出了一种社交影响注意神经网络(SIAN)。SIAN通过一个两级注意力聚合器学习用户和项目表示,并通过社会影响耦合器从独特的朋友推荐圈中提取偏好。实验结果表明,在三个真实数据集上,SIAN显著优于最新基线,并揭示了有趣的社会学模式。
  • 1
    点赞
  • 4
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
Attentive Contrastive Learning Network(关注对比学习网络)是一种用于无监督学习的深度学习模型。它的主要目标是从大规模无标签数据中学习到有意义的特征表示,以便在后续任务中获得更好的性能。 该网络的核心概念是关注和对比学习。关注机制能够帮助网络在数据中发现关键的信息,提高对重要特征的注意力。对比学习则通过将数据样本与其他样本进行比较来学习特征表示。这种对比学习方式可以使网络区分不同的样本,从而为模型提供更多的信息。 Attentive Contrastive Learning Network首先通过卷积神经网络(CNN)或其他预训练模型提取原始图像或数据的特征表示。然后,网络利用关注机制,对这些特征进行加权和选择,以便聚焦在最具信息量的特征上。这样可以减少噪声和冗余,提高模型的鲁棒性和泛化能力。 接下来,网络使用对比损失函数来学习特征表示。对于每个样本,网络将其与其他样本进行对比,并计算它们之间的相似度或差异度量。通过最小化相似样本间的距离和最大化差异样本间的距离,网络可以学习到能够区分样本的特征表示。这种对比学习方式激励网络挖掘数据中的隐藏结构和语义信息。 总体而言,Attentive Contrastive Learning Network是一种强大的方法,可以在无监督学习中学习到数据的有效特征表示。通过关注机制和对比学习,网络能够提取并聚焦在数据中的重要特征上,从而提高后续任务的性能。这种方法在计算机视觉、自然语言处理等领域具有广泛的应用前景。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值