TAG
LLM as predictor
1. Flatten-based
2. GNN-based
GraphGPT
《GraphGPT: Graph Instruction Tuning for Large Language Models》
香港大学、百度
SIGIR2024
GraphGPT是一种基于图的大型语言模型(LLM),旨在通过图指令调优(Graph Instruction Tuning)来提高模型在图结构数据上的泛化能力。即让LLM理解图结构,并直接完成图结构相关的下游任务的模型,如分类和推理。
背景:
- LLM在理解图结构上下文时具有局限性
- 使用基于文本的结构性提示会导致token大小的增加,给现实应用带来了挑战
算法原理:
-
图-文本对齐:通过一个轻量级的图-文本对齐投影器(lightweight graph-text alignment projector),GraphGPT能够将LLMs的文本理解能力与图结构知识相结合。
- text-graph grounding component:为了提高LLMs对图结构信息的理解,GraphGPT引入了文本-图接地范式,该范式生成保留图结构上下文的提示,以桥接文本信息的语义理解和图的固有结构关系。
- 不同对比策略的转换函数,将不同维度的两种模态的表示映射到同一个子空间中
-
图指令调优:GraphGPT框架通过图指令调优将LLMs与图结构知识整合,包括文本-图接地组件(text-graph grounding component)和双阶段指令调优方法。
- 阶段一:在图结构上进行预训练,即自监督图匹配任务:
- 将图中的每个节点视为中心节点,并执行h跳的随机邻居采样,从而得到每个结点的子图结构。
- 图匹配任务的目标是将某个子图所有节点的token与其相应的节点文本信息匹配(对应于论文标题)。这需要根据图节点token的顺序重新排序节点文本信息列表,从而将每个图节点token与其相关的文本描述关联起来,这由大语言模型来完成,而子图所有节点的token产生于下面的映射器。
- 将人类问题中的token 替换为子图所有节点tok
- 阶段一:在图结构上进行预训练,即自监督图匹配任务: