【论文阅读】【三维语义分割】RandLA-Net: Efficient Semantic Segmentation of Large-Scale Point Clouds

本文提出了RandLA-Net,一种针对大点云的实时语义分割方法,采用随机采样降低运算时间,并通过局部特征聚合模块(LocSE、Attentive Pooling、Dilated Residual Block)有效提取特征。实验显示,该方法在Semantic3D和SemanticKITTI上达到SOTA,证明了随机采样在特征提取有效性前提下可替代FPS。
摘要由CSDN通过智能技术生成

2020CVPR
牛津大学

本文提出了针对大场景语义分割的一种方法,主要提出了使用random sampling来进行降采样从而降低运算时间,通过提出的Local Feature Aggregation Module来确保局部特征能够被提取出来,减小random sampling的不利影响。

RandLA-Net

Motivation

本文主要是对大场景,但其实应该是针对点云中包含很多点,例如50k个点这样,因为大场景无非是一个尺度问题,但点云的规模则直接关系到计算的速度和存储空间消耗。以下我们就对包含点很多的点云称为大点云。(自己瞎起个名字)

首先作者提出了目前制约对大点云的实时语义分割的因素有以下三点:
1)目前Point-sampling的方法要么费时,要么费内存,对于大点云来说,都是不可接受的。
2)大多数的方法是使用kernelisation or graph construction的方法提取局部特征。但我本人认为这个说法不太成立,因为作者在之前也说了对局部特征提取特征的方法除了上述两种还有neighbouring feature pooling ,也就是Pointnet++类型和attention-based aggregation。而我认为本文就是用了graph construction和attention-based aggregation这两种方法。
3)对于通常由数百个目标组成的大规模点云,现有的局部特征学习者要么无法捕获复杂的结构,要么由于其感受野的大小有限而效率低下。这个其实我也不太理解,我只能说,本文提出的Local Feature Aggregation Module在结果上来看确实很优秀,但说目前的方法具备上述两者缺陷其一,我不太赞同。

Sampling

作者对比了其他几种sampling的方法,包括:FPS,IDIS,GS,CRS,PGS。这里我就不详细说明这几种采样方法的具体操作方式了,作者在原文中已经写得很清楚了。但其实,常用的也就是FPS。

那么想比于上述方法,Random Sampling具有很好的实时性,作者也对此进行了验证。其他方法,要么速度慢,要么占内存,通过学习的方法则对于大点云不收敛,反正各有各的问题。那么具体的对比如下图:
在这里插入图片描述

但Random Sampling的问题在于,本身大量的点就集中在离LiDAR近的区域,远处的区域稀疏。通过sampling,由于是random的,比例是一样的,那么远处的就更稀疏了,没准那次就丢掉了边缘的点。而FPS则是能够最好的覆盖整个区域,所以相比random sampling,FPS确实更适合语义分割这个问题。但本文追求的是快啊,那么如何才能弥补RS这个缺点呢?那就是增大每个点的感受野,使得在sampling过后,保留下来的点有足够大的感受野,能够包含丢掉的点的信息,即使是在远处点很稀疏的情况下。

Local Feature Aggregation

这就是为了能够弥补RS所提出来的局部特征提取的方法
在这里插入图片描述

### 回答1: randla-net是一种高效的大规模点云语义分割方法。它采用了一种新颖的点云降采样方法,可以在保持点云形状信息的同时大大减少点云数量。此外,它还使用了一种基于局部区域的特征提取方法,可以有效地捕捉点云中的局部特征。最终,randla-net可以在保持较高分割精度的同时,大大提高分割速度。 ### 回答2: Randla-Net是一种高效的大规模点云语义分割方法,它利用深度学习方法实现对三维点云数据中物体的自动识别和分类。在智能驾驶、金字塔建设、城市规划和3D建模等领域,点云数据已经成为一种重要的数据形式。在处理点云数据时,常常需要对点云中的各种物体进行语义分割,划分出物体的类别和边界,以进一步进行场景分析和建模。 Randla-Net的关键思想是将点云数据转换成局部规则网格(LHG)型式,然后对规则网格应用神经网络模型,实现对点云语义分割。相较于传统的点云分割方法,Randla-Net的解决方案更加高效,并且能够适应大规模点云数据的处理。具体来说,Randla-Net采用的局部规则网格可以大大减少点云数据的复杂性,减少无效数据的计算,同时保证点云数据与原始数据的对应性。神经网络模型的引入能够提高计算的全局一致性,并在语义分割中对局部特征和位置被高效获取。此外,Randla-Net融合了RANDomized LAyered points(简称RANDLA)的思想,可以抽取多级别多方向的特征,使得点云数据在语义分割中的处理更加准确。 总之,Randla-Net是一种快速、有效、准确的大规模点云语义分割方法,其优点在于可以处理复杂的大规模点云数据,同时在语义分割中能够提供更高的计算效率和更精确的结果。它的应用将会推动点云技术的发展,为智能驾驶、建筑、机器人、VR/AR等领域提供更加精确的三维场景建模工具。 ### 回答3: RandLA-Net是一种高效而准确的点云语义分割神经网络,专为应对大规模点云场景而开发。该网络的核心功能在于通过快速地对点云数据进行聚类、降采样和投影等操作,实现了对点云进行语义分割,并能够输出详细的分割结果。 RandLA-Net相对于传统点云语义分割算法的优势在于,该算法不但能够处理大规模点云数据,同时还利用了矩阵分解的方法来提高运行速度。因此,该算法在极端情况下也能实现快速和准确的分割,如在不同分辨率、不同大小和不同密度的点云数据上。 RandLA-Net的另一个创新点在于使用了自适应滑动窗口的方法,就是通过分析点云的特征分布,来自动选择和匹配最适宜的窗口大小,以此进一步提高分割效果。同时,该算法还考虑到了实际应用场景中存在的地面、建筑物等不同的目标物体,对各自进行分割和处理,以期达到更高的准确率。 总的来说,RandLA-Net是一种高效、准确、可扩展的神经网络,为卫星、城市规划、无人驾驶等领域提供了强大的支持。该算法的研究提供了新的思路,为点云语义分割界的研究者提供了很好的启示,也为工业界解决实际问题提供了新的思路。
评论 3
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值