【图像处理】A Skinned Multi-Person Linear Model(SMPL)浅解析

【图像处理】A Skinned Multi-Person Linear Model(SMPL)浅解析

SMPL的原理

在这里插入图片描述
首先,博主不做3D建模的工作(尽管这项工作真的很酷),学习blender也仅是出于兴趣,因此,这篇博文中对SMPL模型的理解会有部分不足,内容仅供参考。


《SMPL: A Skinned Multi-Person Linear Model》的作者在文章中写到,一个3D人体mesh由6890个网格顶点和23个关节点组成

  • N = 6890 N=6890 N=6890,3D人体mesh的网格顶点总数
  • K = 23 K=23 K=23,3D人体mesh的关节点总数

同时,作者指出,SMPL将3D人体mesh的状态分为shape和pose:

  • shape影响人体mesh的形状(高矮胖瘦)
  • pose影响人体mesh的姿态(动作姿势)

因为是在三维空间,一个点有三个坐标( x , y , z x,y,z x,y,z),故一个标准3D人体mesh的6890个mesh顶点可表示为:

  • T T T,一个 6890 ∗ 3 6890*3 68903的矩阵。注意,这个矩阵是常数值(对于单独一种性别的mesh来说)

同理,一个标准3D人体mesh的23个关节点可表示为:

  • J J J,一个 24 ∗ 3 24*3 243的矩阵,23个关节点+1个root orientation。注意,这个矩阵是常数值(对于单独一种性别的mesh来说)

另外,还有blend weight,也就是每一个关节点的坐标变化对每一个mesh顶点坐标变化的影响

  • W W W,一个 6890 ∗ 24 6890*24 689024的矩阵。注意,这个矩阵的值需要训练得到

接下来,文章作者定义了影响shape和 pose的两组参数:

  • shape,影响高矮胖瘦: β \beta β,10个参数,值在-1到1之间
  • pose,影响动作姿势: θ \theta θ,72个参数,后69个值在-1到1之间,3*23 + 3,影响23个关节点+1个root orientation的旋转。前三个控制root orientation,后面每连续三个控制一个关节点

这10+72个参数,便是以一个标准3D人体mesh为基础,生成不同shape、不同pose的3D人体mesh所需要的参数


在这里插入图片描述
如上图,左一是一个标准3D人体mesh,也就是由 T T T J J J生成,而颜色代表 W W W
左二,是改变了shape后的3D人体mesh,也就是由 T T T J J J,外加 β \beta β的影响生成
右二,是改变了shape和pose后的3D人体mesh,也就是由 T T T J J J,外加 β \beta β θ \theta θ的影响生成
右一,是在右二的基础上,加入了 W W W的影响后的结果


SMPL模型,神经网络通过学习得到的什么?

四个权重:

  • weigth:一个 6890 ∗ 24 6890*24 689024的tensor
  • J_regressor:一个 24 ∗ 6890 24*6890 246890的tensor
  • shapedirs:一个 6890 ∗ 3 ∗ 10 6890*3*10 6890310的tensor
  • posedirs:一个 6890 ∗ 3 ∗ 207 6890*3*207 68903207的tensor(207=23*9,23是关节点的个数,9是旋转矩阵的元素个数)

至于怎么通过这四个权重,联合 T T T J J J得到3D人体mesh,原文中有相关公式。感兴趣的朋友自行阅读


最后,作者给出了训练得到的权重,给出了标准3D人体mesh的 T T T J J J我们只需要改变 β \beta β θ \theta θ,就能得到不同的3D人体mesh了


改变 β \beta β对3D人体mesh的影响:(shape,影响高矮胖瘦,10个参数)

  1. β \beta β值:[1. 0. 0. 0. 0. 0. 0. 0. 0. 0.]
    在这里插入图片描述

  2. β \beta β值:[0. 1. 0. 0. 0. 0. 0. 0. 0. 0.]
    在这里插入图片描述

  3. β \beta β值:[0. 0. 0. 0. 0. 0.5 0. 0. 0. 0.5]
    在这里插入图片描述


改变 θ \theta θ对3D人体mesh的影响:(pose,影响动作姿势,72个参数)

  1. 第1个参数是 π \pi π,第2个参数是1,其他参数是0
    在这里插入图片描述
  2. 第1个参数是 π \pi π,第4个参数是1,其他参数是0
    在这里插入图片描述
  3. 第1个参数是 π \pi π,第72个参数是1,其他参数是0

在这里插入图片描述

结语

如果您有修改意见或问题,欢迎留言或者通过邮箱和我联系。
手打很辛苦,如果我的文章对您有帮助,转载请注明出处。

### 回答1: SCAPE、BlendSCAPE、SMPLSMPL-H、SMPL-X、STAR都是人体模型的名称。 SCAPE是一种非常流行的3D人体模型,由麻省理工学院的高维媒体实验室开发。SCAPE模型使用一组可变的参数来捕捉人体的形态和姿势变化。 BlendSCAPE是一种在SCAPE模型的基础上进行改进的模型,它在SCAPE模型的基础上增加了更多的参数,使得模型更加逼真。 SMPL是一种用于模拟人体形态和姿势的3D人体模型,由洛杉矶加州大学的人体动力学研究所开发。SMPL模型使用一组参数来捕捉人体的形态和姿势变化。 SMPL-H是SMPL模型的扩展版本,它在SMPL模型的基础上增加了更多的参数,使得模型能够更加准确地模拟人体的高度、肌肉和脂肪分布等。 SMPL-X是SMPL模型的另一个扩展版本,它在SMPL模型的基础上增加了更多的参数,使得模型能够更加逼真地模拟人体的形态和姿势变化。 STAR是一种3D人体模型,由麻省理工学院的高维媒体实验室开发。STAR模型使用一组参数来捕捉人体的形态和姿势变化, ### 回答2: SCAPE(Shape Completion and Animation)是一个用于形状补全和动画的研究项目。它的目标是从单一的参考姿势重建3D模型并进行形状完成。通过该项目,用户可以创建和编辑高分辨率的3D模型,实现更加自然和逼真的动画。 BlendSCAPE是一个用于混合动作生成的算法。它可以根据用户提供的参考动作以及源和目标角色的约束来生成中间动作。这个算法的优点在于它能够自动生成过渡动画,从而减轻了动画师的工作负担。 SMPLSkinned Multi-Person Linear Model)是一个用于生成人体姿势和形状的模型。它可以将输入的姿势参数和形状参数转换为3D模型的姿势和形状。这个模型在计算机图形学和计算机视觉领域有广泛应用,可以用于生成逼真的人体动画、人体姿势识别等。 SMPL-H是SMPL模型的一个变体,它是专门针对于人体手部姿势建模的。它在SMPL的基础上增加了手部骨骼的细节,使得生成的人体模型更加逼真。SMPL-H可以用于手势识别、手部动画生成等领域。 SMPL-X是SMPL模型的扩展版本,它对原来的模型进行了改进,特别是在干扰视觉领域中更加具有挑战性的情况下。SMPL-X适用于各种身体类型、肌肉质量和体形特征的人,可以模拟出更加真实的人体形状和动作。 STAR是一种用于身体姿势重建和动画生成的框架。它结合了SMPL和BlendSCAPE的技术,可以实现从单张图像或者视频中重建出3D人体姿势,并进行动画生成和编辑。STAR框架在计算机视觉和计算机图形学领域有广泛应用,可以用于虚拟现实、游戏开发、人机交互等方面。 ### 回答3: SCAPE是一种用于人体姿势和形状建模的方法。它基于一个三维人体模型的隐式参数表示,并且能够从有限的输入数据中学习模型的参数。SCAPE模型可以用于生成具有多样性和逼真性的人体形状。 BlendSCAPE是一种通过融合多个人体形状进行姿势生成的方法。它可以从多个不同形状的人体模型中获得姿势参数,并将它们结合起来生成新的人体姿势。BlendSCAPE可以用于生成多样性的人体动画或形状变换。 SMPLSkinned Multi-Person Linear model)是一种用于对多人姿势进行建模的方法。它基于线性模型来表示多人姿势的形状和动作。SMPL模型可以用于生成多人姿势的三维模型,以及进行人体姿势估计和动作识别等任务。 SMPL-H是SMPL的一个变种,它在模型中加入了高维度的手部表达。SMPL-H模型可以更准确地捕捉到人体的手部姿势,并且可以用于手部动作分析和手势识别等任务。 SMPL-X是SMPL的另一个改进版本,它在模型中增加了更多的身体部位和形状特征。SMPL-X模型可以更好地捕捉到人体的细节特征,例如面部表情和手指关节运动,并且可以用于更复杂的人体动作分析和合成任务。 STAR(Sparse-skinning Transform-aware Autoencoder Regression)是一种用于人体姿势估计的方法。它通过学习一个稀疏的表示来估计人体姿势和形状,同时考虑到姿势和形状之间的相互关系。STAR方法可以用于实时的人体姿势估计和动作捕捉等应用。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值