U-GAT-IT论文解读(飞浆)

论文主要贡献

解决了无监督的图像翻译问题,当两个域的图像的纹理和形状差别很大时,现有的一些经典模型(CycleGan、UNIT、MUNIT、DRIT等)效果不佳,这些算法适用于两个域的差别不大时,如Photo2Vangogh和Vhoto2Portriat,而Cat2Dog和Selfie2Anime(自拍到漫画)效果不好,本文通过引入attention module和AdaLIN(Adaptive Layer-Instance Normalization)能在几何形变很大的情况下仍然有好的效果,当然形变不大时效果也超过了现有的经典方法,达到SOTA;同时本文的网络结构和超参数在所有实验的数据集上是不变的,而现有的经典方法则需要精细化调参。

模型结构

生成器

在这里插入图片描述
首先图像经过一个下采样模块,然后经过一个残差块,得到编码后的特征图,编码后的特征图分两路,一路是通过一个辅助分类器,得到有每个特征图的权重信息,然后与另外一路编码后的特征图相乘,得到有注意力的特征图。注意力特征图依然是分两路,一路经过一个1x1卷积和激活函数层得到黄色的a1…an特征图,然后黄色特征图通过全连接层得到解码器中 Adaptive Layer-Instance Normalization层的gamma和beta,另外一路作为解码器的输入,经过一个自适应的残差块(含有Adaptive Layer-Instance Normalization)以及上采样模块得到生成结果。

判别器

在这里插入图片描述
具体结构与生成器类似,不过规范化使用的是谱规范化,使训练更加稳定,收敛得更好,激活函数使用的是leakyrelu。

损失函数

损失函数总共有四个,分别是Adversarial loss, Cycle loss, Identity loss以及CAM loss。
Adversarial loss:对抗损失没有采用原始的log函数,使用的是MSE.
在这里插入图片描述
Cycle loss:在这里插入图片描述
Identity loss:cycle-gan架构下的环一致性loss,A翻译到B,然后B翻译到A‘,A和A’需要相同,loss采用的是L1loss.
在这里插入图片描述
Identity loss保证了输入图像A和输出图像B的颜色分布是相似的.

CAM loss
生成器和鉴别器的CAM loss有些不同:
生成器CAM loss,采用的是BCE_loss:
在这里插入图片描述
鉴别器CAM loss, 采用的是MSE,没有论文中log函数:
在这里插入图片描述
用CAM的原因是利用辅助分类器ηs和ηDt的信息,给定一个图像x∈{Xs,Xt},Gs→t和Dt了解它们需要改进的地方,或者在当前状态下两个域之间的最大区别是什么。

实验结果

在这里插入图片描述
第一行是原图,第二行是热力图,第三行是生成的图像,例子中包括人脸到动漫,马到斑马,猫到狗,人脸到画等等,由于网络采用cycle-gan的形式,所以可以互转(动漫到人脸)。

https://www.cnblogs.com/fydeblog/p/11424404.html
https://aistudio.baidu.com/aistudio/education/preview/511721
https://aistudio.baidu.com/aistudio/education/group/info/1340
http://adrai.github.io/flowchart.js/

  • 1
    点赞
  • 8
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值