大家好,我是Mac Jiang,今天和大家分享Coursera-Stanford University-Machine Learning-Programming Exercise 7:K-means Clustering and Principal Principal Component Analysis的第一部分的编码。第一部分讲的是K-means Clustering,即K均值算法的实现过程,虽然我写的代码是正确的,但不一定是最好的,如果有更好的实现方法,请留言指正。当然,欢迎大家转载我的博客,不过在转载之前请标明出处,谢谢。第二部分的地址为:http://blog.csdn.net/a1015553840/article/details/50879343
好的,我们开始讲解第一部分K-means Clustering的具体实现过程。
这部分的主要有两大块内容:
(1)主要是训练PCA算法,并在OpenGL上绘制出K均值算法的具体计算过程,绘制出每次分类情况和中心变换情况。
(2)利用K均值算法对一幅图像进行压缩,此图像为128*128,每个像素由RGB三种颜色标识,而每种颜色用1BYTE(8bit)表示,范围为0-255。如果不采取压缩,那么图像所占存储空间大小为128*128*3BYTE=128*128*24bits = 393,216bits。我们要进行的是利用K均值算法聚类出最常用的16中颜色,这16中颜色只要用4bit标识,加上这十六种颜色与RGB的映射关系共128*128*4 + 16*24 = 65,920bit。可以看到,压缩后存储只占压缩前存储量的1/6左右。
数据集:ex7data2.mat---用于训练K均值算法的训练样本
bird_small.png---用于做压缩测试的图像
函数:displayData.m---把训练样本X的数据可视化
drawLine.m---画出2D降为1D的直线 plotDataPoints.m---k均值算法的点,当属于不同中心时用不同颜色画出
plotProgresskMeans.m---做出k均值算法的中心 runMeans.m---运行k均值算法
ex7.m---K均值算法的主控制函数,控制算法的进行过程
kMeansInitCentroid.m---初始化k均值算法的中心,需要完善代码!
findClosestCentroids.m---将每个样本归为离他最近的中心的那一类,需要完善代码!
computeCentroids.m---将上面求得的类,计算每一类的新的中心,需要完善代码!
这部分作业共三个文件需要完善代码
K均值算法的计算为:
初始化中心;(kMeansInitCentroids.m实现)
Repeat{
from 1 to m:计算每个样本离各类中心的距离,将每个样本分别归类(findClosestCentroids.m实现)
from 1 to K:z在归类后,计算各类的中心(compureCentroids.m实现)
}
这我们需要完成的任务就是编写初始化,样本分类,求新分类中心三个操作
1.ex7的控制过程
%% Machine Learning Online Class
% Exercise 7 | Principle Component Analysis and K-Means Clustering
%
% Instructions
% ------------
%
% This file contains code that helps you get started on the
% exercise. You will need to complete the following functions:
%
% pca.m
% projectData.m
% recoverData.m
% computeCentroids.m
% findClosestCentroids.m
% kMeansInitCentroids.m
%
% For this exercise, you will n