记录一下形状参数(shape parameter)和尺度参数(scale parameter)分别是什么,对分布函数起到什么样的控制作用。
以weibull分布为例,它的概率密度函数(PDF)是:
p
(
x
;
λ
,
v
)
=
v
λ
(
x
λ
)
v
−
1
e
x
p
[
−
(
x
λ
)
v
]
,
x
≥
0
p(x;\lambda,v)=\frac{v}{\lambda}(\frac{x}{\lambda})^{v-1}exp[-(\frac{x}{\lambda})^v]~~~,x≥0
p(x;λ,v)=λv(λx)v−1exp[−(λx)v] ,x≥0
在这里我们不追问weibull分布的物理意义,用对普通函数的角度看待。
其中,
v
v
v是尺度参数,
λ
\lambda
λ是形状参数。
分析
v
v
v和
λ
\lambda
λ有啥用,最简单的办法就是画出来观察观察,
左图:设置形状参数不变,改变尺度参数;观察左图曲线,可以发现,曲线似乎只是在幅度上产生变化,形状上都可以秒速为“逐渐下降的曲线”,因为他们的形状参数是一样的。但是由于尺度参数的不同,他们的“陡缓程度”有所区别,所以我们可以总结:尺度参数控制分布函数在幅度上的变化。
右图:设置尺度参数不变,改变形状参数;仔细观察可以发现,形状参数=1时,曲线形状可以描述为“逐渐下降”;形状参数=2时,曲线为“先骤升,后缓降”;形状参数=4时,可以描述为“骤升骤降”,曲线的形状发生的显著的变化,因此,我们可以总结:形状参数控制分布函数形状的变化。
我们一般也是看到这样的话,在某参数为多少的时候,该分布退化为什么其他分布,这里的参数其实指的都是形状参数。