对于N(0,1)标准正太分布总体的抽样分布
χ^2分布:
χ
2
(
n
)
=
X
1
2
+
X
2
2
+
…
…
+
X
n
2
χ^2(n)=X_1^2+X_2^2+……+X_n^2
χ2(n)=X12+X22+……+Xn2
t分布
t
(
n
)
=
X
V
/
n
t(n)=\frac{X}{\sqrt{V/n}}
t(n)=V/nX
f分布
F
(
m
,
n
)
=
V
1
/
m
V
2
/
n
F(m,n)=\frac{ V_1/m}{V_2/n}
F(m,n)=V2/nV1/m
t
2
(
n
)
∼
F
(
1
,
n
)
t^2(n)\sim F(1,n)
t2(n)∼F(1,n)
1
t
2
(
n
)
∼
F
(
n
,
1
)
\frac{1}{t^2(n)}\sim F(n,1)
t2(n)1∼F(n,1)
性质
大类 | 图像 | 均值 | 方差 |
---|---|---|---|
χ^2分布, | 非负,不对称 | n | 2n |
t分布, | 对称,n>45时近似标准正态分布 | ||
f分布 | 非负,不对称 |