χ^2分布(卡方),t分布,F分布的表达式

本文介绍了统计学中几种常见的连续型随机变量分布,包括χ^2分布、t分布及f分布,并探讨了它们的性质、图像特征、均值与方差等内容。χ^2分布是非负且不对称的;t分布当自由度大于45时接近标准正态分布;f分布同样为非负不对称。这些分布广泛应用于统计推断和假设检验。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

对于N(0,1)标准正太分布总体的抽样分布

χ^2分布:
χ 2 ( n ) = X 1 2 + X 2 2 + … … + X n 2 χ^2(n)=X_1^2+X_2^2+……+X_n^2 χ2(n)=X12+X22++Xn2

t分布
t ( n ) = X V / n t(n)=\frac{X}{\sqrt{V/n}} t(n)=V/n X

f分布
F ( m , n ) = V 1 / m V 2 / n F(m,n)=\frac{ V_1/m}{V_2/n} F(m,n)=V2/nV1/m


t 2 ( n ) ∼ F ( 1 , n ) t^2(n)\sim F(1,n) t2(n)F(1,n)
1 t 2 ( n ) ∼ F ( n , 1 ) \frac{1}{t^2(n)}\sim F(n,1) t2(n)1F(n,1)

性质

大类图像均值方差
χ^2分布,非负,不对称n2n
t分布,对称,n>45时近似标准正态分布
f分布非负,不对称

伽马函数-利用偶函数性质与换元-正态分布

假设检验

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值