MSCOCO检测数据集类别中文名

{0: u'__background__',
 1: u'person',
 2: u'bicycle',
 3: u'car',
 4: u'motorcycle',
 5: u'airplane',
 6: u'bus',
 7: u'train',
 8: u'truck',
 9: u'boat',
 10: u'traffic light',
 11: u'fire hydrant',
 12: u'stop sign',
 13: u'parking meter',
 14: u'bench',
 15: u'bird',
 16: u'cat',
 17: u'dog',
 18: u'horse',
 19: u'sheep',
 20: u'cow',
 21: u'elephant',
 22: u'bear',
 23: u'zebra',
 24: u'giraffe',
 25: u'backpack',
 26: u'umbrella',
 27: u'handbag',
 28: u'tie',
 29: u'suitcase',
 30: u'frisbee',
 31: u'skis',
 32: u'snowboard',
 33: u'sports ball',
 34: u'kite',
 35: u'baseball bat',
 36: u'baseball glove',
 37: u'skateboard',
 38: u'surfboard',
 39: u'tennis racket',
 40: u'bottle',
 41: u'wine glass',
 42: u'cup',
 43: u'fork',
 44: u'knife',
 45: u'spoon',
 46: u'bowl',
 47: u'banana',
 48: u'apple',
 49: u'sandwich',
 50: u'orange',
 51: u'broccoli',
 52: u'carrot',
 53: u'hot dog',
 54: u'pizza',
 55: u'donut',
 56: u'cake',
 57: u'chair',
 58: u'couch',
 59: u'potted plant',
 60: u'bed',
 61: u'dining table',
 62: u'toilet',
 63: u'tv',
 64: u'laptop',
 65: u'mouse',
 66: u'remote',
 67: u'keyboard',
 68: u'cell phone',
 69: u'microwave',
 70: u'oven',
 71: u'toaster',
 72: u'sink',
 73: u'refrigerator',
 74: u'book',
 75: u'clock',
 76: u'vase',
 77: u'scissors',
 78: u'teddy bear',
 79: u'hair drier',
 80: u'toothbrush'}

背景类

自行车
汽车
摩托车
飞机
公交车
火车
卡车

红绿灯
消防栓
停止标志
停车收费表
长凳








斑马
长颈鹿
背包
雨伞
手提包
领带
手提箱
飞盘
滑雪板
单板滑雪
运动球
风筝
棒球棒
棒球手套
滑板
冲浪板
网球拍
瓶子
红酒杯
杯子
叉子



香蕉
苹果
三明治
橙子
西兰花
胡萝卜
热狗
比萨
甜甜圈
蛋糕
椅子
长椅
盆栽

餐桌
马桶
电视
笔记本电脑
鼠标
遥控器
键盘
手机
微波炉
烤箱
烤面包机
洗碗槽
冰箱

时钟
花瓶
剪刀
泰迪熊
吹风机
牙刷

### MS COCO 2017 数据集类别索引详细说明 MS COCO (Microsoft Common Objects in Context) 是一个广泛用于计算机视觉研究的数据集,特别是针对对象检测、分割和图像字幕生成等领域。该数据集提供了丰富的标注信息,包括边界框、实例分割掩码以及关键点注释。 #### 类别数量与名称 MS COCO 2017 数据集包含了80个不同的物体类别[^2]。这些类别的定义对于理解数据集中所涉及的对象至关重要,并且在实际应用中也非常重要,因为它们决定了模型能够识别哪些类型的物品。 以下是完整的类别列表及其对应的索引编号: | 索引 | 类别 | |------|------------| | 1 | person | | 2 | bicycle | | 3 | car | | ... | ... | | 80 | toothbrush | 为了方便开发者访问这些信息,在官方提供的Python API中已经内置了获取类别ID的方法。通过`pycocotools.coco.COCO.loadCats()`函数可以直接加载并查看所有类别的详情[^1]。 ```python from pycocotools.coco import COCO import os # 初始化COCO API dataDir='path/to/coco' dataType='train2017' # 或者 'val2017',取决于使用的子集 annFile='{}/annotations/instances_{}.json'.format(dataDir,dataType) coco=COCO(annFile) # 获取所有类别的id cats = coco.loadCats(coco.getCatIds()) nms=[cat['name'] for cat in cats] print('COCO categories: \n{}\n'.format(' '.join(nms))) # 打印每个类别的id和名字 for i, name in enumerate(nms): print(f"{i+1}: {name}") ``` 这段代码展示了如何利用 `pycocotools` 库来查询和打印出所有的类别名与其相应的索引号。这有助于研究人员快速了解可用的目标种类,并能帮助构建适合特定任务的应用程序。
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Tinet-

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值