AI人像照全流程分享,合适的提示词生成写真效果!

有朋友问美女写真怎么做的?在小红书上真的超级火!!!很多AI美女图文在小红书成千上万的点赞量。

我所了解的是很多在制作AI摄影写真时,都是用的midjourney、SD、FLUX模型这三个工具,一般先制作写真模板图,再进行换脸。

这里我教大家一种最简单的办法,直接在即梦AI导入自己的头像照片作为参考图,就可以创作人像摄影照片。(这是目前最简单的一种方法,上手操作门槛极低)

目录

一、生成写真照

1、古风写真

2、水墨画风

3、新中式风格

4、赫本风格杂志写真

5、民国大小姐

6、初恋青提

7、证件照

8、甜美可爱

二、去水印

一、生成写真照
即梦AI是中国字节跳动自研的模型,它更能识别中国元素和亚洲人脸。而且即梦AI使用方法简单,生成速度快,关键是它是免费的!!!

即梦AI网站:https://jimeng.jianying.com

在AI作图这里点击图片生成,然后输入画面提示语进行生成图片。比如说:古风写真

1、古风写真
点击“导入参考图”,上传自己头像,选择人物长相。

提示语:美丽的亚洲女人,人像摄影,正面,半身照,光圈,白丝长袍,女人全身被水墨草书汉字投影与女人皮肤产生光感交互,投影空间水墨矩阵,水墨风图片,大量层层叠加浮现的极小毛笔草书中文汉字,书法汉字完全随机,形成全屏矩阵,景深汉字背后一轮圆月,模糊效果,36k,色彩明亮

在生成的四张照片中选择自己喜欢的,点击HD,生成高清照片下载。

2、水墨画风
提示语:在黑红色氛围感下的人像写实摄影,目光交流,背景中式水墨风格,美丽的中国美女,上半身特写,头饰,4K Ultra HD,阴影,侧光,立体,特写

3、新中式风格
提示语:美丽的少女,亚洲女孩,穿着新中式风格的吊带裙,绿色的汉服,打着彩色的油纸伞。

4、赫本风格杂志写真
提示语:一个美丽的亚洲少女,人物特写,上半身,人脸,红色的口红,模特,奥黛丽赫本风格,戴着一个经典的大檐帽,帽子上镶有白边,珍珠耳环,珍珠项链,厚重的项链,穿着黑色抹胸长裙时尚大片,Vogue杂志

5、民国大小姐
提示语:复古修身款蕾丝边礼服,泡泡袖,民国大小姐风盘发,白色蕾丝手套,复古长珍珠项链,草坪,白色桌椅,花束,精致下午茶,暖光,复古感,胶片风,高质量,杰作,高像素,高分辨率

6、初恋青提
提示语:穿着白色吊带裙的亚洲少女,微笑,小清新风格,手拿绿色图表,头戴白色蕾丝边头巾,自然光,轮廓光,丁达尔效果,身后是公园,背景虚化,正面半身摄影,高清胶片,高阴影,高阴影清晰度,胶片摄影

7、证件照
提示语:一个美丽的亚洲少女,穿着白衬衫,正面,扎着头发,白底证件照,大大的眼睛,浅色口红,温柔的感觉

8、甜美可爱
提示语:可爱甜美女生 白色贝雷帽 白色羊毛衫 可爱南瓜妆容 小南瓜耳朵吊坠 可爱甜美 大卷发 OOTD 时尚潮流穿搭 景深 虚化 发丝光 简约干净的橙色背景 极简主义风格

当然,也可以直接在即梦首页找到喜欢的图片,看看别人的提示语是怎么写的,直接“做同款”然后修改提示语变成自己需要图片的样子。

二、去水印
即梦AI生成的图片右下角是有水印的,登录百度图片:https://image.baidu.com/,选择“图片编辑”里的去水印功能即可,如果觉得不够清晰,也可以点击变清晰。

<think>好的,用户想了解LibLibAI平台上LoRA模型的使用指南、文档或教程。首先我需要回顾一下之前提供的引用内容,看看有哪些相关信息可以整合。 根据引用[1],LiblibAI是一个提供大量免费模型的平台,用户每天登录可以获得300算力,用于生成图片。但训练LoRA需要会员。引用[2]提到LoRA是用于微调大模型的技术,适合用户有自己的图片风格时使用。引用[3]和[4]详细介绍了LoRA的基本概念和训练流程,比如选择基础模型、准备数据集等步骤。 用户的需求可能包括如何使用已有的LoRA模型生成图片,以及如何训练自己的LoRA。需要分步骤说明,确保结构清晰。另外,用户可能关心是否需要付费,根据引用[1],训练需要会员,生成图片可以使用免费算力,这点要明确指出。 接下来要组织回答的结构:先介绍LoRA模型是什么,再分使用和训练两部分。使用部分包括选择模型、参数设置等;训练部分包括准备数据、选择底模、设置参数等。最后附上平台地址和相关教程链接,确保用户有明确的指引。同时,注意使用正确的LaTeX格式,但根据用户问题,可能数学公式不多,但如果有的话需要检查格式是否正确。 需要确认是否所有步骤都覆盖了用户可能的问题,比如算力消耗、训练时间、数据集要求等。可能还需要提醒用户训练需要会员,避免误解。同时,引用相关引用来支持说明,比如引用[4]解释LoRA的作用,引用[3]的训练步骤示例。 最后检查是否遗漏了用户可能关心的其他问题,比如如何选择合适的基础模型,或者如何处理训练后的模型应用。确保回答全面且符合用户的实际需求。</think>以下是LiblibAI平台LoRA模型的详细使用指南,整合了平台操作流程和关键技术要点: ### 一、LoRA模型基础认知 1. **技术原理**:LoRA(低秩适应)通过低秩矩阵分解调整预训练模型权重,实现参数高效微调[^4] 2. **功能定位**:作为大模型的风格插件,仅需少量数据即可实现特定风格生成(如PVC材质、特定画风)[^4] 3. **性能指标**:典型LoRA模型大小约100-200MB,训练时间约1-3小时(视数据集规模) ### 二、LoRA模型使用指南 #### 1. 模型应用流程 1. 访问[模型广场](https://www.liblib.ai/),筛选"LoRA"分类 2. 选择目标模型(如「PVC材质LoRA」),点击"立即生图" 3. 参数配置示范: ```python # 触发词格式示例 prompt = "best quality, <lora:PVC_Style:0.8>, pvc material texture" ``` 4. 算力消耗:每图1-3点(免费用户每日300点额度)[^1] #### 2. 参数调整技巧 | 参数项 | 推荐范围 | 作用说明 | |--------|----------|----------| | LoRA权重 | 0.6-1.2 | 控制风格强度 | | 采样步数 | 20-30 | 细节精细度 | | CFG值 | 7-9 | 提示词相关性 | ### 三、LoRA模型训练教程 #### 1. 训练准备阶段 1. **数据集要求**: - 数量:20-50张同风格图片 - 格式:512×512或1024×1024像素 - 命名:`数字_描述词.jpg`(如`01_pvc_material.jpg`) 2. **基础模型选择**: - 人像/ACG:SD1.5 - 写实风格:SDXL - 特殊材质:Foundation1.0[^3] #### 2. 训练参数设置 关键参数配置公式: $$ \text{学习率} = \frac{基础学习率}{\sqrt{\text{batch\_size}}} $$ 推荐配置: - Epochs:10-15 - Batch Size:2-4 - 学习率:1e-4至1e-5 #### 3. 训练执行流程 1. 上传数据集至「我的训练」模块 2. 选择训练目标(风格/物体/物) 3. 启动训练并监控loss曲线(理想收敛值0.3-0.5) ### 四、进阶应用技巧 1. **混合使用策略**:同时加载2-3个LoRA时需调整权重总和≤2.0 2. **风格融合公式**: $$ \text{输出} = \alpha \cdot \text{LoRA}_A + \beta \cdot \text{LoRA}_B \quad (\alpha+\beta≤2.0) $$ 3. **模型微调**:使用「增量训练」功能对现有LoRA追加训练
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值