基本矩阵的物理含义以及如何求极线——从齐次坐标开始说起

摘要

本文从齐次坐标开始说起,介绍齐次坐标中点的表达方式,齐次坐标中点在直线上的表述,然后载介绍本质矩阵(基本矩阵)的物理意义,最后介绍怎么求极线。


动机

网上没看到很好说明对极约束的资料,许多资料都说本质矩阵(基本矩阵)描述了两个相机间的对极约束,但是都没说清楚它们的几何意义(至少不能让我很好的理解),因此自己总结一下。

齐次坐标中点的表示方法

一个点坐标换成齐次坐标表示可以简单理解为在最后加一个维度,该维度值为1。例如:
设有一个坐标
( x , y ) − > ( x , y , 1 ) ( x , y , z ) − > ( x , y , z , 1 ) (x, y) -> (x, y, 1) \\ (x, y, z) -> (x, y, z, 1) \\ (x,y)>(x,y,1)(x,y,z)>(x,y,z,1)

齐次坐标中点在直线上的表示方法

在二维平面上,一条直线 l l l 可以用直线方程 a x + b y + c = 0 ax + by + c = 0 ax+by+c=0 来表示(这里x, y 是变量),我们还可以用向量来表示一条直线:
l = ( a , b , c ) T l = (a, b, c)^T l=(a,b,c)T
已知一个具体位置的点 p ( x 0 , y 0 ) p(x_0, y_0) p(x0,y0) ,若该点在直线 l l l 上,则有
a x 0 + b y 0 + c = 0 ax_0 + by_0 + c = 0 ax0+by0+c=0
当我们改用齐次坐标表示点 p ( x 0 , y 0 , 1 ) p(x_0, y_0, 1) p(x0,y0,1) ,那么该点在直线 l l l 上的表示可以用向量表述:
p l = 0 pl = 0 pl=0
因此,改用齐次坐标表示一个点后,判断该点在不在一条直线上的方式,变成判断等式 p l = 0 pl = 0 pl=0 是否成立,或者说点 p p p l l l 的内积是否为0。

基本矩阵的物理意义以及极线的求法

如下图, O 1 、 O 2 O_1、O_2 O1O2 是两个相机光心在三维空间中的位置, P P P 为三维空间中一个点; O 1 、 O 2 、 P O_1、O_2、P O1O2P 三点所确定的平面,与两个相机成像平面 I 1 、 I 2 I_1、I_2 I1I2 相交于四个点;其中, p 1 、 p 2 p_1、p_2 p1p2 为点 P P P 在两个相机成像平面 I 1 、 I 2 I_1、I_2 I1I2 上的投影, e 1 、 e 2 e_1、e_2 e1e2 为直线 O 1 、 O 2 O_1、O_2 O1O2 与两个相机成像平面 I 1 、 I 2 I_1、I_2 I1I2 的两个交点。其中
基线 O 1 、 O 2 O_1、O_2 O1O2 所确定的线段
极平面 O 1 、 O 2 、 P O_1、O_2、P O1O2P 三点所确定的平面
极点:点 e 1 、 e 2 e_1、e_2 e1e2
极线 p 1 、 e 1 p_1、e_1 p1e1 所确定的直线 l 1 l_1 l1 以及 p 2 、 e 2 p_2、e_2 p2e2 所确定的直线 l 2 l_2 l2
对极几何约束
对于 p 1 = ( u 1 , v 1 , 1 ) T , p 2 = ( u 2 , v 2 , 1 ) T p_1=(u_1, v_1, 1)^T, p_2=(u_2, v_2, 1)^T p1=(u1,v1,1)T,p2=(u2,v2,1)T ,基本矩阵 F F F ,根据对极约束有
p 2 T F p 1 = 0 p_2^TFp_1=0 p2TFp1=0
回顾上面齐次坐标中点在直线上的表示方法,我们可以知道点 p 2 p_2 p2 在直线 F p 1 Fp_1 Fp1 上,因此直线直线 F p 1 Fp_1 Fp1 就是我们所说的极线,且该直线为上图中的极线 l 2 l_2 l2 。通过类比可得另一条极线为
l 1 = F − 1 p 2 l_1 = F^{-1}p_2 l1=F1p2

相关/参考链接

从零开始一起学习SLAM | 为什么要用齐次坐标?
从零开始一起学习SLAM | 不推公式,如何真正理解对极约束?

评论 4
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值