pytorch 21 各种学习率调度器的使用

本文介绍了PyTorch中常见的学习率调度器,包括cosineAnnealingLR、cosineAnnealingWarmRestarts、CyclicLR、ExponentialLR、MultiStepLR、OneCycleLR和ReduceLROnPlateau。详细解析了它们的参数和使用方法,并通过图表展示了各自的学习率变化曲线,帮助理解不同调度器如何影响训练过程。

pytorch内置的学习率调度在lr_scheduler包下可以使用from torch.optim import lr_scheduler。为了更直观的了解各种调度器的学习率调整过程,现将各种学习率调度器的使用和学习率曲线进行绘图。其详细的使用方法可见以下官网地址https://pytorch.org/docs/1.9.1/search.html?q=lr_scheduler&check_keywords=yes&area=default,下面只简单介绍基本的参数列表和使用方法,及其调度曲线。

1、cosineAnn

使用余弦退火算法调整学习率,其周期为T_max*2个step,其调度效果如图1所示。

scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
评论
成就一亿技术人!
拼手气红包6.0元
还能输入1000个字符
 
红包 添加红包
表情包 插入表情
 条评论被折叠 查看
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

万里鹏程转瞬至

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值