pytorch内置的学习率调度在lr_scheduler包下可以使用from torch.optim import lr_scheduler。为了更直观的了解各种调度器的学习率调整过程,现将各种学习率调度器的使用和学习率曲线进行绘图。其详细的使用方法可见以下官网地址https://pytorch.org/docs/1.9.1/search.html?q=lr_scheduler&check_keywords=yes&area=default,下面只简单介绍基本的参数列表和使用方法,及其调度曲线。
1、cosineAnn
使用余弦退火算法调整学习率,其周期为T_max*2个step,其调度效果如图1所示。
scheduler = lr_scheduler.CosineAnnealingLR(optimizer, T_max=10)
本文介绍了PyTorch中常见的学习率调度器,包括cosineAnnealingLR、cosineAnnealingWarmRestarts、CyclicLR、ExponentialLR、MultiStepLR、OneCycleLR和ReduceLROnPlateau。详细解析了它们的参数和使用方法,并通过图表展示了各自的学习率变化曲线,帮助理解不同调度器如何影响训练过程。
订阅专栏 解锁全文
2432

被折叠的 条评论
为什么被折叠?



