柯西-施瓦茨不等式的证明

柯西施瓦茨不等式的证明:






例题




柯西-施瓦兹不等式(Cauchy-布尼亚科夫斯基-施瓦茨不等式,在不同的上下文中有着广泛的应用。对于装备了内积的空间中的两个向量,此不等式提供了一个关于这两个向量的内积与其范数之间关系的重要结论。 ### 数学定义 在一个内积空间中,给定任意两个向量$\mathbf{u}$ 和 $\mathbf{v}$, 柯西-施瓦茨不等式表明: $$|\langle \mathbf{u},\mathbf{v} \rangle|^2 \leq \langle \mathbf{u},\mathbf{u} \rangle \cdot \langle \mathbf{v},\mathbf{v} \rangle$$ 这里$\langle \cdot,\cdot \rangle$表示内积运算,而两边分别是向量$\mathbf{u}$和$\mathbf{v}$的内积以及它们各自范数的平方。 当且仅当$\mathbf{u}$和$\mathbf{v}$线性相关,即存在一个常数$c$使得$\mathbf{u}=c\mathbf{v}$或者$\mathbf{v}=c\mathbf{u}$,等号成立。 ### 证明过程 一种简单的证明方式是考虑构造一个新的向量$\mathbf{x} = a\mathbf{u} + b\mathbf{v}$,并且选择$a$和$b$以确保这个新构建的向量的长度最小化。具体来说, 取$a=\langle v,v\rangle$, $b=-\langle u,v\rangle$ 那么可以得到: $$0 \leq \|a\mathbf{u}+b\mathbf{v}\|^2 = |a|^2\|\mathbf{u}\|^2 + 2Re(a\overline{b})\langle \mathbf{u},\mathbf{v} \rangle + |b|^2\|\mathbf{v}\|^2$$ 将选定的$a,b$值带入上式,并简化可得柯西-施瓦茨不等式的形式。 另一种更直接的方法是从零向量出发,利用内积的性质来建立不等式。假设有一个参数$t$,我们可以写出如下形式的非负表达式: $$0 \leq (t\mathbf{u}-\mathbf{v})(t\mathbf{u}-\mathbf{v})^* = t^2(\mathbf{u}\mathbf{u}^*) - 2t Re(\mathbf{u}\mathbf{v}^*)+(\mathbf{v}\mathbf{v}^*)$$ 这是一个关于$t$的一元二次方程,由于它的判别式必须小于等于0才能保证对所有的$t$都非负,这会导出柯西-施瓦茨不等式
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值