OpenAI 训练你自己的文档库

前言

赶上ai的大潮,尝试做个问答式文档库
请添加图片描述

项目

使用OpenAI训练一个简单的文档库,这里用王者荣耀早期公开的数据进行测试.

安装环境

!pip install gpt_index
!pip install langchain

引入包

from gpt_index import SimpleDirectoryReader, GPTListIndex, GPTSimpleVectorIndex, LLMPredictor, PromptHelper
from langchain import OpenAI
import sys
#from google.colab import drive
import os

设置环境变量(key)

os.environ["OPENAI_API_KEY"] = 'Your OpenAI Key 你的OpenAI Key'

声明方法

将文件夹内的文件加入训练数据集合并输出训练好的数据

def construct_index(directory_path):
  # set maximum input size
  max_input_size = 4096
  # set number of output tokens
  num_outputs = 256
  # set maximum chunk overlap
  max_chunk_overlap = 20
  # set chunk size limit
  chunk_size_limit = 600

  prompt_helper = PromptHelper(max_input_size, num_outputs, max_chunk_overlap, chunk_size_limit=chunk_size_limit)

  # define LLM  text-davinci-003
  llm_predictor = LLMPredictor(llm=OpenAI(temperature=0, model_name="text-ada-001", max_tokens=num_outputs))
  
  documents = SimpleDirectoryReader(directory_path).load_data()
  
  index = GPTSimpleVectorIndex(documents, llm_predictor=llm_predictor, prompt_helper=prompt_helper)
  
  index.save_to_disk('index.json')
  
  return index

带训练数据集合的提问

def ask_bot(input_index = 'index.json'):
  index = GPTSimpleVectorIndex.load_from_disk(input_index)
  while True:
    query = input('What do you want to ask the bot?   \n')
    response = index.query(query, response_mode="compact")
    print ("\nBot says: \n\n" + response.response + "\n\n\n")

生成训练数据

调用方法,将content文件夹内的所有txt都加入训练

index = construct_index("/content/")

使用训练好的数据集进行提问

ask_bot('index.json')

运行效果

运行效果

鸣谢

1littlecoder

### 回答1: C 知道:openai 是一个强大的人工智能平台,它提供了许多自然语言处理和机器学习的工具和模型,可以用于文本生成、语言翻译、语音识别等方面的应用。同时,openai 还提供了一些预训练的模型,可以用于各种自然语言处理任务的快速实现。 ### 回答2: Python的三方OpenAI可以用于自然语言处理、机器学习和深度学习等领域。它提供了各种强大的工具和模型,可以帮助开发者构建智能对话系统、生成文本、理解语义等任务。 首先,OpenAI中最受欢迎的功能之一是GPT-3(Generative Pre-trained Transformer 3)模型。GPT-3是一个基于深度学习的自然语言处理模型,可以生成高质量的文本。使用OpenAI开发者可以轻松地调用GPT-3模型进行文本生成任务,如文章摘要、对话生成、文档自动化等。 其次,OpenAI还提供了一些用于文本分类和情感分析的模型和工具。这些功能可以用于对文本进行情感分析、情绪检测、垃圾邮件过滤等任务。开发者可以使用OpenAI中的预训练模型,也可以根据自己的需求自定义训练模型。 此外,OpenAI还支持语言翻译、问答系统和对话生成等任务。开发者可以利用这些功能构建智能问答系统,将用户的问题转化为相应的答案,并进行实时交互。 OpenAI还具有良好的可扩展性和灵活性。开发者可以根据自己的需求自定义模型、调整参数和训练数据,以适应不同的应用场景。此外,OpenAI还提供了丰富的文档和示例代码,帮助开发者快速上手和解决问题。 综上所述,Python的三方OpenAI提供了一系列强大的工具和模型,可用于自然语言处理、机器学习和深度学习任务,包括文本生成、情感分析、问答系统等。通过OpenAI开发者可以构建智能应用,提升用户体验和智能化水平。 ### 回答3: OpenAI是一家人工智能研究机构,Python的三方openai可以使用OpenAI的技术和模型来进行各种任务和应用。它提供了一系列功能强大的API,可以用于多个领域。 首先,openai可以用于自然语言处理。它包含了用于文本生成的模型,可以生成文章、对话、代码等。这些模型可以用于自动写作、聊天机器人、AI助手等应用。另外,openai还包括了语言理解的模型,可以进行文本分类、命名实体识别等任务。 其次,openai还可以进行图像处理。它包含了用于图像生成和处理的模型,可以生成逼真的图像、转换图像风格、实现图像分割等任务。这些功能可以用于图像生成、图像编辑、机器人视觉等领域。 此外,openai还可以进行强化学习。它提供了用于强化学习的模型和算法,可以训练智能体进行决策和优化。这些功能可以用于自动驾驶、游戏智能体、机器人控制等应用。 总的来说,openai提供了一系列用于自然语言处理、图像处理和强化学习的模型和算法,能够支持多个应用领域。通过使用openai,我们可以更方便地应用OpenAI的技术,从而实现一些有趣和有用的功能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值