针对 DeepSeek-7B 的 LoRA 模型微调代码示例

以下是 DeepSeek-7B 的 LoRA 微调代码示例,结构清晰且可直接运行:


环境配置

pip install transformers peft datasets accelerate bitsandbytes

代码实现

1. 模型与数据加载
import torch
from transformers import AutoTokenizer, AutoModelForCausalLM, TrainingArguments, Trainer
from peft import LoraConfig, get_peft_model

# 加载模型与分词器
model = AutoModelForCausalLM.from_pretrained(
    "deepseek-ai/deepseek-llm-7b-chat",
    torch_dtype=torch.bfloat16,
    device_map="auto"
)
tokenizer = AutoTokenizer.from_pretrained("deepseek-ai/deepseek-llm-7b-chat", trust_remote_code=True)

# 示例数据(JSON格式)
data = [{
    "instruction": "你是一个助手",
    "input": "解释量子计算",
    "output": "量子计算利用量子比特的叠加态进行并行计算..."
}]
2. 数据预处理
def format_data(example):
    text = f"User: {example['instruction']} {example['input']}\n\nAssistant: {example['output']}"
    return tokenizer(text, truncation=True, max_length=512)

dataset = Dataset.from_dict({"text": [d["input"] + d["output"] for d in data]})
dataset = dataset.map(format_data, batched=True)
3. 配置 LoRA
lora_config = LoraConfig(
    r=8,
    lora_alpha=32,
    target_modules=["q_proj", "v_proj"],  # 目标注意力层
    lora_dropout=0.05,
    bias="none",
    task_type="CAUSAL_LM"
)
model = get_peft_model(model, lora_config)
model.print_trainable_parameters()  # 输出示例:0.3% 参数可训练
4. 训练参数设置
training_args = TrainingArguments(
    output_dir="./output",
    per_device_train_batch_size=4,
    gradient_accumulation_steps=8,
    num_train_epochs=3,
    learning_rate=2e-5,
    fp16=True,
    logging_steps=10,
    save_strategy="steps",
    save_steps=100
)
5. 启动训练
trainer = Trainer(
    model=model,
    args=training_args,
    train_dataset=dataset,
    tokenizer=tokenizer
)
trainer.train()

推理测试

input_text = "User: 解释量子计算\n\nAssistant:"
inputs = tokenizer(input_text, return_tensors="pt").to(model.device)
outputs = model.generate(**inputs, max_new_tokens=200)
print(tokenizer.decode(outputs[0], skip_special_tokens=True))

关键参数说明

参数作用推荐值
target_modules指定注入LoRA的注意力层[“q_proj”, “v_proj”]
r控制模型适配能力的秩8-64(通常8足够)
per_device_train_batch_size根据GPU显存调整(24G显存可设4)2-8

显存优化技巧

  1. 4-bit量化(需12GB显存):
model = AutoModelForCausalLM.from_pretrained(..., load_in_4bit=True)
  1. 梯度检查点
model.gradient_checkpointing_enable()
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

学亮编程手记

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值