一、LangChain架构设计理念
核心组件:
- Model I/O:统一模型接口(如ChatOpenAI)
- Chains:构建复杂处理流程的原子操作链
- Memory:对话状态管理
- Indexes:文档处理与检索增强生成(RAG)
二、生产级模型配置实践
from langchain.chat_models import ChatOpenAI
llm = ChatOpenAI(
temperature=0.8,
model="Qwen-7B",
openai_api_key="EMPTY",
openai_api_base="http://localhost:6006/v1"
)
工程优化建议:
- 连接池配置(提升吞吐量):
import httpx
transport = httpx.HTTPTransport(
retries=3,
limits=httpx.Limits(max_connections=100)
)
llm.client = httpx.Client(transport=transport)
- 流式输出优化:
response = llm.stream("解释BERT模型原理")
for chunk in response:
print(chunk.content, end="", flush=True)
三、核心模块开发示例
1. 智能文档问答系统(RAG架构)
from langchain.document_loaders import PyPDFLoader
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain.embeddings import HuggingFaceEmbeddings
from langchain.vectorstores import FAISS
loader = PyPDFLoader("transformer.pdf")
documents = loader.load()
text_splitter = RecursiveCharacterTextSplitter(
chunk_size=512,
chunk_overlap=64
)
texts = text_splitter.split_documents(documents)
embeddings = HuggingFaceEmbeddings(model_name="BAAI/bge-base-zh")
vector_store = FAISS.from_documents(texts, embeddings)
2. 混合检索链
from langchain.chains import RetrievalQA
qa_chain = RetrievalQA.from_chain_type(
llm=llm,
chain_type="stuff",
retriever=vector_store.as_retriever(search_kwargs={"k": 3}),
return_source_documents=True
)
response = qa_chain("Attention机制的核心公式是什么?")
print(f"答案:{response['result']}\n来源:{response['source_documents'][0].metadata['source']}")
四、企业级部署方案
1. 服务封装(FastAPI+LangChain)
from fastapi import FastAPI
from pydantic import BaseModel
app = FastAPI()
class QueryRequest(BaseModel):
prompt: str
max_tokens: int = 512
@app.post("/v1/chat")
async def chat_endpoint(request: QueryRequest):
response = llm.invoke(request.prompt)
return {"response": response.content}
2. 性能监控配置
from prometheus_client import Counter, Histogram
REQUEST_COUNT = Counter(
'langchain_requests_total',
'Total number of model requests'
)
RESPONSE_TIME = Histogram(
'langchain_response_time_seconds',
'Histogram of response times'
)
@RESPONSE_TIME.time()
def monitored_invoke(prompt):
REQUEST_COUNT.inc()
return llm.invoke(prompt)
五、调试与优化技巧
- LangSmith跟踪:
import os
os.environ["LANGCHAIN_TRACING"] = "true"
os.environ["LANGCHAIN_ENDPOINT"] = "https://api.smith.langchain.com"
- 显存优化策略:
from transformers import AutoModel
model = AutoModel.from_pretrained(
"Qwen/Qwen-7B",
torch_dtype=torch.bfloat16,
use_flash_attention_2=True
)
六、典型应用场景
场景 | 技术方案 | 关键配置参数 |
---|
智能客服 | ConversationChain + Redis | memory_window=5 |
代码审查 | CodeAnalysisAgent | temperature=0.2 |
舆情分析 | SentimentAnalysisPipeline | batch_size=32 |