YOLOV5代码精读之非极大值抑制(NMS)

NMS(Non-Maximum Suppression,非极大值抑制)算法是一种在特征提取和深度学习目标检测算法中广泛应用的技术。以下是对NMS算法原理、主要贡献、优缺点、实现以及应用场景的详细解析:

一、NMS算法原理

NMS算法的核心理念在于通过筛选局部极大值来找到最优解,从而提高算法的准确性和效率。具体来说,NMS算法会遍历所有的检测框或特征点,比较每个元素与其邻域内的其他元素,如果某个元素是其邻域内的局部极大值,则保留该元素,否则将其抑制(如置为0或删除)。在目标检测中,NMS算法常用于处理多个预测框之间的重叠问题,通过计算预测框之间的交并比(IoU)来判断是否属于同一个目标,并保留置信度最高的预测框,抑制重叠度高的其他预测框。

先了解IOU原理及实现

交并比(IoU, Intersection over Union)是一种计算不同图像相互重叠比例的算法,经常被用于深度学习领域的目标检测或语义分割任务中。

在我们得到模型输出的预测框位置后,也可以计算输出框与真实框(Ground Truth Bound)之间的 IoU,此时,这个框的取值范围为 0~1,0 表示两个框不相交,1

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值