YOLOV5代码精读之detect.py

一、main函数

def main(opt):
    check_requirements(exclude=('tensorboard', 'thop'))
    run(**vars(opt))


if __name__ == "__main__":
    opt = parse_opt()
    main(opt)

这段代码包含了两个主要部分:main 函数和程序的入口点。下面逐步分解并详细解释这段代码:

  1. def main(opt):

    • 定义一个名为 main 的函数,参数 opt 是一个包含了命令行参数的对象,通常是从 parse_opt() 函数取得的。
  2. check_requirements(exclude=('tensorboard', 'thop'))

    • 这是函数的第一行代码,调用 check_requirements 函数来检查项目的要求和依赖。这一行特别指定了在检查过程中排除 tensorboard 和 thop 这两个库。
    • 目的是确保程序在运行之前,所有必需的库和环境都已正确安装。
  3. run(**vars(opt))

    • 调用 run 函数,并使用 vars(opt) 将 opt 对象转化为字典格式传递给 runvars() 函数返回对象 opt 的 __dict__ 属性,其中包含所有以键值对形式存储的命令行参数。
    • 这允许 run 函数接收到对应的配置参数,运行相应的主功能。
  4. if __name__ == "__main__":

    • 这一行是典型的 Python 主程序入口检查,确保只有在该文件被直接运行时,以下代码才会被执行,而不会在被其他模块导入时执行。
  5. opt = parse_opt()

    • 调用 parse_opt() 函数,这个函数解析命令行参数并返回相应的配置对象,赋值给 opt
  6. main(opt)

    • 调用之前定义的 main 函数,并将解析后的参数 opt 作为参数传入。

这段代码的主要功能是:当脚本作为主程序运行时,首先解析命令行参数,并将这些参数传递给 main 函数。在 main 函数中,会检查项目所需的依赖项,并使用解析后的参数执行主要的检测功能(run 函数)。这种结构有效地将程序的运行环境和执行逻辑分开,增强了代码的清晰性和可维护性。

1.1 使用说明

# YOLOv5 🚀 by Ultralytics, GPL-3.0 license
"""
Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.

Usage - sources:
    $ python detect.py --weights yolov5s.pt --source 0                               # webcam
                                                     img.jpg                         # image
                                                     vid.mp4                         # video
                                                     screen                          # screenshot
                                                     path/                           # directory
                                                     'path/*.jpg'                    # glob
                                                     'https://youtu.be/Zgi9g1ksQHc'  # YouTube
                                                     'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream

Usage - formats:
    $ python detect.py --weights yolov5s.pt                 # PyTorch
                                 yolov5s.torchscript        # TorchScript
                                 yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                                 yolov5s_openvino_model     # OpenVINO
                                 yolov5s.engine             # TensorRT
                                 yolov5s.mlmodel            # CoreML (macOS-only)
                                 yolov5s_saved_model        # TensorFlow SavedModel
                                 yolov5s.pb                 # TensorFlow GraphDef
                                 yolov5s.tflite             # TensorFlow Lite
                                 yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                                 yolov5s_paddle_model       # PaddlePaddle
"""

这段代码是关于 YOLOv5 目标检测模型的注释部分,提供了有关如何使用该模型进行推理的信息。接下来,我将逐步分解并详细解释代码的每个部分。

  1. 注释头部:

    # YOLOv5 🚀 by Ultralytics, GPL-3.0 license
    

    这行代码是一个简单的注释,说明了该代码使用的模型是 YOLOv5,这是一种由 Ultralytics 开发的开放源代码目标检测模型,并且遵循 GPL-3.0 许可证。

  2. 功能说明:

    """
    Run YOLOv5 detection inference on images, videos, directories, globs, YouTube, webcam, streams, etc.
    

    这段说明描述了代码的主要功能,即可以在多种源数据上运行 YOLOv5 模型进行目标检测,包括图像、视频、目录、YouTube 和摄像头等。

  3. 使用说明 - 数据源:

    Usage - sources:
        $ python detect.py --weights yolov5s.pt --source 0                               # webcam
        img.jpg                         # image
        vid.mp4                         # video
        screen                          # screenshot
        path/                           # directory
        'path/*.jpg'                    # glob
        'https://youtu.be/Zgi9g1ksQHc'  # YouTube
        'rtsp://example.com/media.mp4'  # RTSP, RTMP, HTTP stream
    

    这里列出了不同的数据源选项,供用户选择用于推理的数据:

    • --source 0 表示使用摄像头(webcam)
    • img.jpg 表示使用单张图片
    • vid.mp4 表示使用视频文件
    • screen 表示获取当前屏幕截图
    • path/表示使用指定目录中的所有文件
    • path/*.jpg 表示使用特定格式的文件(这里是 JPEG 图像)
    • 还支持 YouTube 链接和各种流媒体格式(RTSP, RTMP, HTTP)。
  4. 使用说明 - 模型格式:

    Usage - formats:
        $ python detect.py --weights yolov5s.pt                 # PyTorch
                             yolov5s.torchscript        # TorchScript
                             yolov5s.onnx               # ONNX Runtime or OpenCV DNN with --dnn
                             yolov5s_openvino_model     # OpenVINO
                             yolov5s.engine             # TensorRT
                             yolov5s.mlmodel            # CoreML (macOS-only)
                             yolov5s_saved_model        # TensorFlow SavedModel
                             yolov5s.pb                 # TensorFlow GraphDef
                             yolov5s.tflite             # TensorFlow Lite
                             yolov5s_edgetpu.tflite     # TensorFlow Edge TPU
                             yolov5s_paddle_model       # PaddlePaddle
    

    该部分说明了可以使用的不同模型格式,用户可以根据其需求选择相应格式的模型权重进行检测:

    • 支持 PyTorch, TorchScript, ONNX, OpenVINO, TensorRT, CoreML, TensorFlow 等多种格式。

这段代码的主要功能是提供 YOLOv5 目标检测模型的使用说明和用户指南。它列出了用户可以使用的各种数据源,说明了如何运行模型进行图片或视频中的对象检测。另外,它也提供了支持的模型格式的详细信息,使得用户可以根据自己的应用需求选择合适的模型文件。整体而言,这段注释是使用 YOLOv5 进行目标检测的一个入门指南。

 1.2 依赖库

import argparse
import os
import platform
import sys
from pathlib import Path

import torch

FILE = Path(__file__).resolve()
ROOT = FILE.parents[0]  # YOLOv5 root directory
if str(ROOT) not in sys.path:
    sys.path.append(str(ROOT))  # add ROOT to PATH
ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative

from models.common import DetectMultiBackend
from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
                           increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
from utils.plots import Annotator, colors, save_one_box
from utils.torch_utils import select_device, smart_inference_mode

 这段代码的目的是为了设置YOLOv5模型的环境,导入必要的库和模块,并进行一些基础的准备工作,以下是逐步分解及详细解释:

  1. 导入库:

    import argparse
    import os
    import platform
    import sys
    from pathlib import Path
    import torch
    
    • argparse: 用于处理命令行参数。
    • os: 提供与操作系统交互的功能,如文件路径处理。
    • platform: 提供对操作系统平台的访问。
    • sys: 访问与 Python 解释器有关的变量和函数。
    • Path: 来自pathlib模块,用于处理文件和目录路径的高层次接口。
    • torch: PyTorch库,YOLOv5模型基于该库进行深度学习处理。
  2. 设置文件路径:

    FILE = Path(__file__).resolve()
    ROOT = FILE.parents[0]  # YOLOv5 root directory
    
    • FILE 变量获取当前脚本的绝对路径。
    • ROOT 变量是当前文件的父目录,即整个YOLOv5项目的根目录。
  3. 添加到系统路径:

    if str(ROOT) not in sys.path:
        sys.path.append(str(ROOT))  # add ROOT to PATH
    ROOT = Path(os.path.relpath(ROOT, Path.cwd()))  # relative
    
    • 检查项目根目录是否已经在系统路径中,如果不在就添加它。这是为了便于后续导入YOLOv5的其他模块。
    • ROOT路径转为相对路径,方便在不同环境中运行。
  4. 导入YOLOv5特定模块:

    from models.common import DetectMultiBackend
    from utils.dataloaders import IMG_FORMATS, VID_FORMATS, LoadImages, LoadScreenshots, LoadStreams
    from utils.general import (LOGGER, Profile, check_file, check_img_size, check_imshow, check_requirements, colorstr, cv2,
                               increment_path, non_max_suppression, print_args, scale_boxes, strip_optimizer, xyxy2xywh)
    from utils.plots import Annotator, colors, save_one_box
    from utils.torch_utils import select_device, smart_inference_mode
    
    • DetectMultiBackend: 用于处理不同后端的模型(如PyTorch、ONNX等)。
    • LoadImagesLoadScreenshotsLoadStreams: 用于加载图片、截图,以及流媒体。
    • LOGGERProfile, 等等:用于日志记录,性能分析等实用功能。
    • check_filecheck_img_size: 检查文件和图像大小的有效性。
    • non_max_suppression: 进行非极大值抑制,过滤重复的检测框。
    • Annotatorcolorssave_one_box: 用于对结果进行可视化处理和保存。
    • select_devicesmart_inference_mode: 选择设备,比如CPU或GPU,并管理推理模式。

总结而言,这段代码定义了YOLOv5目标检测模型所需的环境与依赖性,设置了根目录路径,并导入了模型和实用工具的相关模块。这为后续的模型推理和数据处理打下了基础。整个目标是准备好环境和工具,以便可以方便地执行目标检测任务。

二、parse_opt函数

def parse_opt():
    parser = argparse.ArgumentParser()
    parser.add_argument('--weights', nargs='+', type=str, default=ROOT / 'yolov5s.pt', help='model path or triton URL')
    parser.add_argument('--source', type=str, default=ROOT / 'data/images', help='file/dir/URL/glob/screen/0(webcam)')
    parser.add_argument('--data', type=str, default=ROOT / 'data/coco128.yaml', help='(optional) dataset.yaml path')
    parser.add_argument('--imgsz', '--img', '--img-size', nargs='+', type=int, default=[640], help='inference size h,w')
    parser.add_argument('--conf-thres', type=float, default=0.25, help='confidence threshold')
    parser.add_argument('--iou-thres', type=float, default=0.45, help='NMS IoU threshold')
    parser.add_argument('--max-det', type=int, default=1000, help='maximum detections per image')
    parser.add_argument('--device', default='', help='cuda device, i.e. 0 or 0,1,2,3 or cpu')
    parser.add_argument('--view-img', action='store_true', help='show results')
    parser.add_argument('--save-txt', action='store_true', help='save results to *.txt')
    parser.add_argument('--save-conf', action='store_true', help='save confidences in --save-txt labels')
    parser.add_argument('--save-crop', action='store_true', help='save cropped prediction boxes')
    parser.add_argument('--nosave', action='store_true', help='do not save images/videos')
    parser.add_argument('--classes', nargs='+', type=int, help='filter by class: --classes 0, or --classes 0 2 3')
    parser.add_argument('--agnostic-nms', action='store_true', help='class-agnostic NMS')
    parser.add_argument('--augment', action='store_true', help='augmented inference')
    parser.add_argument('--visualize', action='store_true', help='visualize features')
    parser.add_argument('--update', action='store_true', help='update all models')
    parser.add_argument('--project', default=ROOT / 'runs/detect', help='save results to project/name')
    parser.add_argument('--name', default='exp', help='save results to project/name')
    parser.add_argument('--exist-ok', action='store_true', help='existing project/name ok, do not increment')
    parser.add_argument('--line-thickness', default=3, type=int, help='bounding box thickness (pixels)')
    parser.add_argument('--hide-labels', default=False, action='store_true', help='hide labels')
    parser.add_argument('--hide-conf', default=False, action='store_true', help='hide confidences')
    parser.add_argument('--half', action='store_true', help='use FP16 half-precision inference')
    parser.add_argument('--dnn', action='store_true', help='use OpenCV DNN for ONNX inference')
    parser.add_argument('--vid-stride', type=int, default=1, help='video frame-rate stride')
    opt = parser.parse_args()
    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    print_args(vars(opt))
    return opt
  1. 导入模块

    parser = argparse.ArgumentParser()
    

    创建一个命令行参数解析器对象。这一行引入了 argparse 模块,用于处理命令行输入的参数。

  2. 添加参数: 使用 add_argument 方法为程序设置了多种可选参数:

    • --weights:指定模型权重文件的路径或triton网址,支持多个权重输入,默认为 ROOT / 'yolov5s.pt'
    • --source:定义输入源,可以是文件、目录、网址、模式匹配等,默认为 ROOT / 'data/images'
    • --data:可选,数据集的 YAML 文件路径,默认为 ROOT / 'data/coco128.yaml'
    • --imgsz:指定推理模型的输入尺寸 (高度, 宽度),默认为 [640],且支持多输入。
    • --conf-thres:设置置信度阈值,默认为 0.25,低于此值的检测结果将被过滤。
    • --iou-thres:设置 NMS(非极大值抑制)的 IOU 阈值,默认为 0.45
    • --max-det:每张图片最大检测数,默认为 1000
    • --device:指定执行推理的设备,支持 CUDA(GPU)或 CPU,默认为空。
    • --view-img:如果设置此参数,程序会在推理后显示图像。
    • --save-txt:如果设置此参数,检测结果会保存为文本文件。
    • --save-conf:如果设置此参数,文本文件中会包含置信度信息。
    • --save-crop:如果设置,将保存裁剪后的检测框。
    • --nosave:如果设置,程序不会保存推理后的图像或视频。
    • --classes:根据类标签过滤检测结果,支持多个类输入。
    • --agnostic-nms:如果设置,使用类无关的 NMS。
    • --augment:如果设置,将进行增强推理。
    • --visualize:如果设置,将可视化特征。
    • --update:如果设置,更新所有模型。
    • --project:设置结果保存的项目路径,默认为 ROOT / 'runs/detect'
    • --name:指定结果保存的名称,默认为 exp
    • --exist-ok:如果设置,允许使用已存在的项目名称。
    • --line-thickness:设置边框线的宽度,默认为 3 像素。
    • --hide-labels:如果设置,隐藏标签。
    • --hide-conf:如果设置,隐藏置信度。
    • --half:如果设置,使用 FP16 半精度推理。
    • --dnn:如果设置,使用 OpenCV DNN 进行 ONNX 推理。
    • --vid-stride:设置视频帧速率步长,默认为 1。
  3. 解析参数

    opt = parser.parse_args()
    

    这一行代码会解析传入的命令行参数,并将结果存储在 opt 变量中。

  4. 扩展图像尺寸

    opt.imgsz *= 2 if len(opt.imgsz) == 1 else 1  # expand
    

    如果指定的 imgsz 参数只有一个值,程序将其扩展为宽度和高度都为该值的元组。例如,如果输入为 640,则将其转换为 (640, 640)

  5. 打印参数

    print_args(vars(opt))
    

    这行代码会将解析后的参数以字典形式传递给 print_args 函数(假设已定义),以便于查看输入的参数。

  6. 返回参数

    return opt
    

    最终返回解析后的参数对象 opt

此代码块的主要功能是定义和解析命令行参数,旨在为使用 YOLOv5 模型进行目标检测的程序配置输入选项。用户可以通过各种参数控制模型的行为,包括设置权重文件、输入源、推理尺寸、结果保存选项以及设备等。通过使用 argparse,程序能够方便地根据用户的输入进行灵活配置,从而提高了代码的可用性和灵活性。

 三、run函数

def run(
        weights=ROOT / 'yolov5s.pt',  # model path or triton URL
        source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        vid_stride=1,  # video frame-rate stride
):
    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    screenshot = source.lower().startswith('screen')
    if is_url and is_file:
        source = check_file(source)  # download

    # Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

    # Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size

    # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs

    # Run inference
    model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
    seen, windows, dt = 0, [], (Profile(), Profile(), Profile())
    for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

        # Inference
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(im, augment=augment, visualize=visualize)

        # NMS
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

        # Second-stage classifier (optional)
        # pred = utils.general.apply_classifier(pred, classifier_model, im, im0s)

        # Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(f'{txt_path}.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == 'Linux' and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

        # Print time (inference-only)
        LOGGER.info(f"{s}{'' if len(det) else '(no detections), '}{dt[1].dt * 1E3:.1f}ms")

    # Print results
    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)

这段代码的主要功能是运行 YOLOv5 模型进行目标检测推断。下面逐步分解并详细解释代码的各个部分。

3.1 函数参数定义

def run(
        weights=ROOT / 'yolov5s.pt',  # model path or triton URL
        source=ROOT / 'data/images',  # file/dir/URL/glob/screen/0(webcam)
        data=ROOT / 'data/coco128.yaml',  # dataset.yaml path
        imgsz=(640, 640),  # inference size (height, width)
        conf_thres=0.25,  # confidence threshold
        iou_thres=0.45,  # NMS IOU threshold
        max_det=1000,  # maximum detections per image
        device='',  # cuda device, i.e. 0 or 0,1,2,3 or cpu
        view_img=False,  # show results
        save_txt=False,  # save results to *.txt
        save_conf=False,  # save confidences in --save-txt labels
        save_crop=False,  # save cropped prediction boxes
        nosave=False,  # do not save images/videos
        classes=None,  # filter by class: --class 0, or --class 0 2 3
        agnostic_nms=False,  # class-agnostic NMS
        augment=False,  # augmented inference
        visualize=False,  # visualize features
        update=False,  # update all models
        project=ROOT / 'runs/detect',  # save results to project/name
        name='exp',  # save results to project/name
        exist_ok=False,  # existing project/name ok, do not increment
        line_thickness=3,  # bounding box thickness (pixels)
        hide_labels=False,  # hide labels
        hide_conf=False,  # hide confidences
        half=False,  # use FP16 half-precision inference
        dnn=False,  # use OpenCV DNN for ONNX inference
        vid_stride=1,  # video frame-rate stride
):

这段代码定义了一组参数,这些参数将用于运行YOLOv5目标检测模型的推理过程。下面是对每一个参数的逐步解释:

  1. weights:指定模型权重文件的路径,这里为yolov5s.pt,可以是本地文件路径或是Triton模型服务的URL。

  2. source:输入数据源的路径,可以是图像文件、视频文件、目录、URL、屏幕或摄像头(例如0表示使用网络摄像头)。

  3. data:指定数据集的配置文件(例如coco128.yaml),用于定义训练所需的类别及其路径等信息。

  4. imgsz:推理时图像的尺寸,格式为(高度, 宽度),默认为(640, 640)

  5. conf_thres:检测时的置信度阈值,默认值为0.25,即只有置信度高于该值的检测结果才会被保留。

  6. iou_thres:NMS(非最大抑制)方法中的IOU(交并比)阈值,默认为0.45,用于过滤重叠的检测框。

  7. max_det:每张图像上允许的最大检测数量,默认为1000

  8. device:指定执行推理的设备,可以是CUDA设备编号(如0、1、2、3)或是CPU。

  9. view_img:布尔值,设置为True时会显示推理结果的图像。

  10. save_txt:布尔值,设置为True时会将检测结果保存为文本文件(.txt)。

  11. save_conf:布尔值,设置为True时会在保存的文本标签中也保存置信度。

  12. save_crop:布尔值,设置为True时会保存裁剪后的预测框。

  13. nosave:布尔值,设置为True时不保存任何图像或视频。

  14. classes:可以指定仅过滤某些类别进行检测的参数(例如--class 0 或 --class 0 2 3)。

  15. agnostic_nms:布尔值,设置为True时表示进行类别无关的NMS。

  16. augment:布尔值,设置为True时启用增强推理。

  17. visualize:布尔值,设置为True时可视化特征图。

  18. update:布尔值,设置为True时会更新所有模型以修复可能的警告。

  19. project:指定结果保存的项目路径,默认为runs/detect,即检测结果将保存在哪里。

  20. name:指定结果保存的名称,默认为exp,将作为项目文件夹的名称。

  21. exist_ok:布尔值,设置为True时,如果项目或名称已存在,允许覆盖而不增加后缀。

  22. line_thickness:设置边界框的线条厚度,单位为像素,默认为3

  23. hide_labels:布尔值,设置为True时隐藏标签。

  24. hide_conf:布尔值,设置为True时隐藏置信度。

  25. half:布尔值,设置为True时使用FP16半精度推理,适用于具有FP16支持的设备。

  26. dnn:布尔值,设置为True时使用OpenCV的DNN模块进行ONNX推理。

  27. vid_stride:指定视频的帧率步长,默认为1,即每一帧都进行推理。

这段代码主要用于配置YOLOv5模型进行目标检测推理的参数。通过设置不同的参数,用户可以控制模型的输入源、推理过程、输出结果以及模型的各种性能选项(如置信度阈值、NMS参数等)。这种灵活性使得在不同的应用场景中能够快速调整模型的行为,以满足具体需求。

3.2 处理输入源

    source = str(source)
    save_img = not nosave and not source.endswith('.txt')  # save inference images
    is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    screenshot = source.lower().startswith('screen')
    if is_url and is_file:
        source = check_file(source)  # download

这段代码主要是处理输入源 source 的各种情况,为接下来的目标检测做准备。我们逐步分解并详细解释每一行:

  1. source = str(source)
    将 source 转换为字符串格式。这一步确保后面的操作可以正确处理 source,无论它是路径、URL 还是其他形式。

  2. save_img = not nosave and not source.endswith('.txt')
    这一行定义了 save_img 变量。当设置了 nosave(即不保存)为 False 并且 source 并非以 .txt 结尾时,save_img 为 True。这样做的目的是决定是否保存推理生成的图像。

  3. is_file = Path(source).suffix[1:] in (IMG_FORMATS + VID_FORMATS)
    这里使用 Path 来检查 source 的文件扩展名(后缀)。is_file 为 True 表示 source 是一个图像文件或视频文件,因为它的后缀在已定义的图像格式 IMG_FORMATS 和视频格式 VID_FORMATS 中。

  4. is_url = source.lower().startswith(('rtsp://', 'rtmp://', 'http://', 'https://'))
    is_url 用于判断 source 是否是一个网络 URL。使用 lower() 方法将其转为小写,以保证匹配的有效性。

  5. webcam = source.isnumeric() or source.endswith('.txt') or (is_url and not is_file)
    webcam 变量判断 source 是否表示一个摄像头输入。具体来说,若 source 是数字(表示摄像头索引)、以 .txt 结尾(可能是路径或文件名),或一个 URL 且不是文件,则 webcam 为 True

  6. screenshot = source.lower().startswith('screen')
    这行代码检测 source 是否以 'screen' 开头,若是则设置 screenshot 为 True。这表明输入源是一个屏幕截图。

  7. if is_url and is_file:
    这个条件判断如果 source 同时是 URL 且是文件类型(这在逻辑上通常不成立),就会执行以下下载操作。

  8. source = check_file(source)
    如果上面的条件成立,调用函数 check_file 下载文件,并更新 source 变量为本地文件路径。

这段代码的主要功能是处理用户输入的源 source,并根据其格式决定如何进行目标检测:

  • 它首先将 source 转换为字符串。
  • 然后判断是否需要保存推理图像,以及 source 的类型(文件、URL、摄像头等)。
  • 最后,如果 source 是一个有效的 URL 且期望为文件,将下载该文件。

这段代码是目标检测系统中准备阶段的重要组成部分,确保能灵活处理多种输入源,为后续推理过程提供可靠的信息。

3.3 创建保存目录

# Directories
    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)  # increment run
    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)  # make dir

这段代码的目的是创建一个目录结构,用于保存模型推理的结果。以下是逐步分解和详细解释:

  1. 定义保存目录

    save_dir = increment_path(Path(project) / name, exist_ok=exist_ok)
    
    • Path(project) / name:这部分代码通过Path类创建一个路径对象,它会组合projectname,得到一个保存结果的基础路径。
    • increment_path(...):这是一个自定义函数,其作用是根据路径是否已存在来生成新的路径。如果在指定的目录下已经存在一个文件夹,其名称与name相同,那么该函数会对name进行递增,比如将name改为name_1name_2等,直到找到一个不存在的名称,从而避免覆盖之前的结果。
    • exist_ok=exist_ok:这个参数用来控制是否允许已存在的目录。若exist_ok为True,则不抛出异常;为False则会抛出异常。
  2. 创建子目录

    (save_dir / 'labels' if save_txt else save_dir).mkdir(parents=True, exist_ok=True)
    
    • (save_dir / 'labels' if save_txt else save_dir):这部分代码判断如果save_txt为True,它将创建一个子目录labels来保存标签文件;如果save_txt为False,则使用保存目录本身save_dir
    • .mkdir(parents=True, exist_ok=True):调用mkdir方法来创建目录。参数说明:
      • parents=True:如果父目录不存在,则创建父目录。
      • exist_ok=True:如果目录已经存在,则不抛出异常。

这段代码的主要功能是在指定的路径下创建一个用于保存推理结果的目录。根据用户的设置,它将确保不会覆盖已有的目录,并且能够灵活创建一个子目录用于保存标签文件,具体取决于用户是否选择了保存标签的选项。

3.4 加载模型

# Load model
    device = select_device(device)
    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    stride, names, pt = model.stride, model.names, model.pt
    imgsz = check_img_size(imgsz, s=stride)  # check image size
  • 使用 select_device 选择计算设备。
  • 加载 YOLOv5 的多后端检测模型(DetectMultiBackend)。
  • 检查输入图像的大小是否合法。

这段代码的主要目的是加载YOLOv5模型以进行目标检测。下面将逐步分解和详细解释这一段代码。

  1. 选择设备

    device = select_device(device)
    

    这一行调用了 select_device 函数,用于根据提供的设备参数(可以是CUDA设备或CPU)选择合适的计算设备。如果设备为空字符串,则默认为使用CUDA(如果系统支持)或CPU。这一步是为了确保后续的模型加载和推理在正确的设备上进行。

  2. 加载模型

    model = DetectMultiBackend(weights, device=device, dnn=dnn, data=data, fp16=half)
    

    在这一行,DetectMultiBackend 类被用来加载YOLOv5模型。其构造函数接受多个参数:

    • weights:指定模型的权重文件路径(.pt文件)。
    • device:之前选择的设备,用于模型计算。
    • dnn:一个布尔值,指示是否使用OpenCV DNN支持。
    • data:包含类名称和数据集信息的yaml文件路径。
    • fp16:一个布尔值,指示是否使用FP16精度来加速计算(半精度浮点数)。

    这个模型可以支持多种后端推理,因此命名为DetectMultiBackend

  3. 获取模型参数

    stride, names, pt = model.stride, model.names, model.pt
    

    这一行从加载的模型中提取了一些重要的属性:

    • stride:模型的步幅,用于影响图像尺寸和特征提取。
    • names:模型识别的类的名称列表,通常是数据集中目标的类别名称。
    • pt:指示是否为PyTorch模型的布尔值。
  4. 检查图像大小

    imgsz = check_img_size(imgsz, s=stride)  # check image size
    

    这行代码调用了 check_img_size 函数,验证并调整输入的图像大小。这确保输入图像的尺寸符合网络要求,并且与步幅一致,避免潜在的错误。

这段代码的主要功能是加载YOLOv5目标检测模型。它根据用户指定的设备(CUDA或CPU)选择合适的计算资源,加载指定的模型权重文件,并抽取模型的重要参数(如步幅、类别名称等)。最后,它确保输入的图像尺寸符合模型要求。这些准备工作都是为了后续的目标检测推理做好准备。

3.5 加载数据

 # Dataloader
    bs = 1  # batch_size
    if webcam:
        view_img = check_imshow(warn=True)
        dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
        bs = len(dataset)
    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    vid_path, vid_writer = [None] * bs, [None] * bs
  • 根据输入源类型(摄像头、截图、图像/视频文件)加载数据。
  • 设置批量大小 (bs)。

这段代码的主要功能是在根据不同的数据源准备数据加载器,以便后续进行目标检测推理。下面逐步分解并详细解释这段代码:

  1. 初始化批处理大小

    bs = 1  # batch_size
    

    这里将批处理大小(bs)初始化为1,表示每次处理一个图像。在后续的代码中,如果使用的是网络摄像头(webcam)作为数据源,这个值可能会发生变化。

  2. 判断数据源类型

    if webcam:
    

    这行代码用于检查webcam变量是否为真。如果webcam为真,表示数据源是一个网络摄像头。

  3. 处理网络摄像头输入

    view_img = check_imshow(warn=True)
    dataset = LoadStreams(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    bs = len(dataset)
    
    • check_imshow(warn=True):这个函数用于检查是否可以显示图片,如果不能,它会发出警告。
    • LoadStreams(...):这个函数用于实时从网络摄像头加载视频流,并准备好图像数据以供后续处理。参数img_size为输入图像的大小,stride为模型处理时的步幅,auto表示是否自动推理模型,vid_stride用于控制视频的帧率。
    • bs = len(dataset):更新批处理大小为数据集的长度,这在使用多个摄像头或有多个流时很重要。
  4. 处理截图输入

    elif screenshot:
        dataset = LoadScreenshots(source, img_size=imgsz, stride=stride, auto=pt)
    

    这里检查screenshot变量,如果为真,使用LoadScreenshots(...)函数从给定的源加载截图数据。它的行为类似于LoadStreams,但是针对的是保存的图片而不是实时流。

  5. 处理图像或视频输入

    else:
        dataset = LoadImages(source, img_size=imgsz, stride=stride, auto=pt, vid_stride=vid_stride)
    

    如果上述两个条件均不满足,将会执行这块代码,使用LoadImages(...)函数从指定数据源加载图像或视频文件。此处的参数含义与前面的类似。

  6. 初始化视频路径和写入器

    vid_path, vid_writer = [None] * bs, [None] * bs
    

    这里初始化两个列表:vid_pathvid_writer,长度为bs,初始值均为None。它们将用于存储每个流的路径和对应的视频写入器,以便保存处理后的视频结果。

以上代码段的主要功能是根据不同的数据源类型(网络摄像头、截图或图像/视频文件)设置数据加载器。它动态分配批处理大小并使用适当的加载类(LoadStreamsLoadScreenshotsLoadImages),以便为后续的目标检测推理准备图像数据。这段代码是YOLOv5推理过程中的一部分,确保输入数据的正确处理和准备。

3.6 推断过程

  • 进行模型的热身,以提高推断速度。
  • 遍历数据集,对每幅图像进行推断:
    • 将图像转换为张量并归一化处理。
    • 进行推断,并使用 NMS 处理预测结果。

3.6.1 预热部分

 model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz))  # warmup
 seen, windows, dt = 0, [], (Profile(), Profile(), Profile())

这段代码的作用主要是对模型进行预热(warmup),以确保在实际推理前模型能够稳定运行和提升性能。下面逐步分解和详细解释这段代码:

  1. model.warmup(imgsz=(1 if pt or model.triton else bs, 3, *imgsz)):
    • model.warmup(...):调用模型的warmup方法,目的是为了提高模型在推理时的性能。这一过程通常涉及到在一些小批量数据上进行前向传播,以使模型的参数和计算图稳定。

    • imgsz=(1 if pt or model.triton else bs, 3, *imgsz):这是传递给warmup方法的参数,表示输入图像的尺寸。

      • 1 if pt or model.triton else bs:如果模型是PyTorch模型(pt为True)或者是通过Triton部署的,则使用批次大小为1的形式进行预热;否则使用之前定义的bs(批次大小)。
      • 3:这里代表输入图像的通道数,通常RGB图像有3个通道。
      • *imgsz:这会将imgsz元组(如(640, 640))展开为输入尺寸中的两个维度,从而形成完整的输入尺寸。
  2. seen, windows, dt = 0, [], (Profile(), Profile(), Profile()):
    • seen = 0:初始化一个计数器,用于记录已经处理的图像数量。
    • windows = []:创建一个空列表,用于存储窗口的名称或路径,通常用于后续显示图像的窗口。
    • dt = (Profile(), Profile(), Profile()):创建一个元组,包含三个Profile实例。Profile通常是一个用于计时的工具类,它能够帮助开发者跟踪代码中不同部分的执行时间,进而优化性能。

这一段代码的主要功能是对YOLOv5模型进行预热,以便于提高推理效率。通过预热,模型可以在处理实际图像之前稳定其性能,同时伴随初始化一些必要的变量,这包括用来记录处理过的图像数量和用于性能剖析的工具。这对保证后续推理阶段的流畅性和准确性是非常重要的。

 3.6.2 图像预处理

  for path, im, im0s, vid_cap, s in dataset:
        with dt[0]:
            im = torch.from_numpy(im).to(model.device)
            im = im.half() if model.fp16 else im.float()  # uint8 to fp16/32
            im /= 255  # 0 - 255 to 0.0 - 1.0
            if len(im.shape) == 3:
                im = im[None]  # expand for batch dim

这段代码是YOLOv5模型推理过程中处理图像的一个步骤。接下来我们将逐行分解和详细解释这段代码。

  1. for path, im, im0s, vid_cap, s in dataset:

    • 这行代码用于遍历数据集中每一帧的数据。dataset是一个数据加载器,它返回每一帧的路径、处理后的图像、原始图像、视频捕捉对象和字符串描述(例如图像维度)。
    • path:图像的路径。
    • im:经过预处理的图像,此时为NumPy数组格式。
    • im0s:原始图像(没有经过预处理)。
    • vid_cap:视频捕捉对象,如果输入是视频。
    • s:一般用于保存处理信息,帮助记录状态。
  2. with dt[0]:

    • 该行代码使用上下文管理器来测量处理这一帧图像所花费的时间,dt是一个用于性能分析的列表。
  3. im = torch.from_numpy(im).to(model.device)

    • 将NumPy数组格式的图像转换为PyTorch张量,并将其移动到指定的设备(例如CPU或GPU)。model.device指定逻辑设备,通常是CUDA或CPU。
  4. im = im.half() if model.fp16 else im.float()

    • 根据模型是否使用FP16(半精度浮点数),将图像数据类型转换为half(FP16)或float(FP32)。在推理过程中使用半精度可以减少内存占用和提高速度。
  5. im /= 255

    • 将图像的像素值从范围[0, 255]标准化到[0.0, 1.0]。这是深度学习模型常用的预处理步骤,可以加速收敛并提高模型准确性。
  6. if len(im.shape) == 3:

    • 检查处理后的图像的维度。如果图像是二维(例如灰度图像),则长度为2;如果是三维(例如彩色图像),则长度为3。
  7. im = im[None]

    • 如果图像是三维的,那么将其扩展为四维,以便将其视为一个批量。这个操作是将单个图像作为一个批量处理,增加一个维度,便于与模型的输入形状相匹配。

这段代码的功能是处理从数据集加载的每一帧图像,将其转换为适合YOLOv5模型输入的格式。具体步骤包括将NumPy数组转为PyTorch张量,选择适当的数据类型(FP16或FP32),归一化像素值,以及调整图像维度以匹配模型输入要求。这些步骤对于确保模型能够正确处理输入数据至关重要,是YOLOv5推理过程的核心部分。

 3.6.3 前向推理

        # Inference
        with dt[1]:
            visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
            pred = model(im, augment=augment, visualize=visualize)
  1. 注释:

    # Inference
    

    这是一条注释,标志着下面的代码块是用于推理(Inference)阶段的。

  2. 上下文管理器:

    with dt[1]:
    

    这里使用了一个上下文管理器(with语句),dt是一个包含性能分析的列表,dt[1]用于记录推理阶段的时间。通过使用上下文管理器,代码在执行推理时会自动开始和结束时间记录。

  3. 可视化路径的生成:

    visualize = increment_path(save_dir / Path(path).stem, mkdir=True) if visualize else False
    

    这行代码的意思是:

    • Path(path).stem 获取路径 path 的文件名(不带扩展名)。
    • 使用 increment_path 函数生成一个用于保存可视化结果的路径。如果 visualize 参数为 True,则会在 save_dir 的目录下创建一个新的目录;如果 visualize 为 False,则 visualize 变量将被赋值为 False
    • 这样做的目的是保证在执行可视化时,每次都会生成一个新的存储路径,不会覆盖之前的结果。
  4. 模型推理:

    pred = model(im, augment=augment, visualize=visualize)
    

    这行代码调用了 model 对象进行推理:

    • im 是输入的图像数据。
    • augment=augment 将增广参数传递给模型,允许模型在进行推理时使用数据增强。
    • visualize=visualize 表示是否需要在推理过程中生成可视化结果(基于上面的代码决定是否创建目录)。
    • 结果保存在 pred 变量中,通常是模型对输入图像的检测结果。

这段代码的主要功能是执行图像的推理(Inference)过程。在推理过程中,它记录了推理所需的时间,并决定是否生成可视化结果的保存路径。如果需要可视化,代码会创建一个新的目录来存储结果,并调用模型进行推理,生成目标检测的结果。这部分代码是整个目标检测流水线中的重要环节,负责将输入图像转换为模型的输出。

 3.6.4 nms过滤

        # NMS
        with dt[2]:
            pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)

这段代码的功能是进行非极大值抑制(Non-Maximum Suppression,NMS),其主要目的是从模型的预测结果中消除冗余的边界框(bounding boxes),即在同一目标上出现多个预测时,只保留一个最为准确的预测框。下面是逐步分解和详细解释代码的过程:

  1. 上下文环境:

    • 代码片段在一个 with 语句中运行,dt[2] 是一个时间统计工具,用于记录此段代码执行所耗费的时间。这有助于性能分析,了解推理速度和 NMS 阶段的执行时间。
  2. 调用函数:

    pred = non_max_suppression(pred, conf_thres, iou_thres, classes, agnostic_nms, max_det=max_det)
    
    • non_max_suppression 是一个函数,它接受几个参数来执行非极大值抑制:
      • pred: 这是模型预测的结果,通常是一个张量(tensor),包含了多个边界框及其置信度(confidence scores)和类别信息。
      • conf_thres: 置信度阈值,只有置信度高于此值的边界框才会被保留。
      • iou_thres: 交并比阈值(Intersection over Union),用于决定两个边界框是否重叠并且互相抑制。
      • classes: 过滤选项,只保留特定类别的预测,如只想看“人”类的预测结果。
      • agnostic_nms: 布尔值,如果为 True,则不考虑类别信息,而是对所有类别的边界框一起进行 NMS。
      • max_det: 每张图片最多保留的检测框数量限制。
  3. 赋值:

    • 函数返回经过 NMS 处理后的边界框,更新 pred 变量,以便后续处理使用。

这段代码通过非极大值抑制(NMS)处理模型的预测结果,有效地消除了重叠的边界框。主要功能是根据一定的置信度和重叠度阈值筛选出最有可能的真实目标,减少冗余,为后续的结果处理提供更精确的检测输出。NMS 是对象检测任务中非常重要的一步,能够显著提高检测结果的质量和可靠性。

3.6.5 处理预测结果

# Process predictions
        for i, det in enumerate(pred):  # per image
            seen += 1
            if webcam:  # batch_size >= 1
                p, im0, frame = path[i], im0s[i].copy(), dataset.count
                s += f'{i}: '
            else:
                p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

            p = Path(p)  # to Path
            save_path = str(save_dir / p.name)  # im.jpg
            txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt
            s += '%gx%g ' % im.shape[2:]  # print string
            gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
            imc = im0.copy() if save_crop else im0  # for save_crop
            annotator = Annotator(im0, line_width=line_thickness, example=str(names))
            if len(det):
                # Rescale boxes from img_size to im0 size
                det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

                # Print results
                for c in det[:, 5].unique():
                    n = (det[:, 5] == c).sum()  # detections per class
                    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(f'{txt_path}.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)
  • 对于每幅图像的检测结果:
    • 计算检测框的坐标,并进行缩放。
    • 打印检测信息,并决定是否保存结果。
    • 绘制检测框并保存(如果需要)。

这段代码主要用于处理目标检测模型的预测结果,包括绘制检测框、保存结果和生成标签文件。下面逐步分解并详细解释代码的每个部分:

3.6.5.1 遍历检测结果
for i, det in enumerate(pred):  # per image
    seen += 1

这里对每个图像的检测结果 pred 进行遍历。每一次循环都处理一张图像的检测结果,seen 累计已处理的图像数量。

这段代码的主要功能是在进行目标检测后,对每张检测到的图像进行逐一处理。下面是对代码的逐步分解和详细解释:

  1. for i, det in enumerate(pred):

    • 这一行使用 enumerate 函数对 pred 进行迭代。pred 是一个包含了所有图像的检测结果的列表。enumerate 会返回一个包含两个元素的元组:第一个元素 i 是当前所处理的索引(即当前是第几张图像),第二个元素 det 是该图像的检测结果。
    • 假设 pred 中包含多张图像的检测结果,循环将会遍历每一张图像的结果。
  2. seen += 1

    • 这一行用来记录已经处理的图像数量。每处理一张图像,就将 seen 变量加1。
    • seen 是一个全局变量,用来跟踪迄今为止所处理的图片数量。这个计数器通常在完整的检测过程中被用作性能指标的一部分,帮助判断算法处理了多少帧或图像。

这段代码的主要功能是对已经得到的检测结果进行逐一处理,并且通过 seen 变量记录已经处理的图像数量。这在目标检测流程中是常见的步骤,通常用于评估检测算法的性能和有效性。代码的设计使得处理每张图像时可以访问其检测结果,从而进行进一步操作,如可视化、保存结果、生成报告等。

3.6.5.2 处理文件路径
if webcam:  # batch_size >= 1
    p, im0, frame = path[i], im0s[i].copy(), dataset.count
    s += f'{i}: '
else:
    p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)

确定当前处理的是来自于摄像头(webcam)获取的图像还是其他来源(文件或视频)。如果是来自摄像头,使用索引 i 获取相应的路径和图像数据;如果不是,直接采用路径和图像的副本。

这段代码的功能是处理不同数据源(如视频流或图片)中的每一帧,并准备数据以进行后续的推理和处理。我们逐步分解并详细解释这段代码:

  1. webcam 判断

    if webcam:  # batch_size >= 1
    

    这一行检查 webcam 的布尔值,确定当前数据源是否是网络摄像头。如果 webcam 为真,意味着输入来自摄像头,通常意味着每个处理帧的批量大小(batch_size)大于等于1。

  2. 处理来自摄像头的情况

    p, im0, frame = path[i], im0s[i].copy(), dataset.count
    
    • p:获取当前帧的路径。在摄像头的情况下,每帧可能会有一个动态路径。
    • im0:当前帧的图像数据,通过 im0s[i].copy() 进行复制,以避免对原始数据的直接修改。
    • frame:获取当前帧的计数,dataset.count 返回当前帧的序号,通常从0开始计数。
  3. 处理非摄像头(如文件或视频)的情况

    else:
        p, im0, frame = path, im0s.copy(), getattr(dataset, 'frame', 0)
    
    • p:在非摄像头的情况下,将 path 赋值给 p,表示输入的文件或视频源的路径。
    • im0:直接将所有的图像数据复制到 im0 中,因为处理的是一批数据,而不是单独的帧。
    • frame:使用 getattr() 函数从 dataset 中获取 frame 属性的值,如果不存在,则返回0。这指的是当前处理的帧数(在视频或图像序列中)。
  4. 字符串累加

    s += f'{i}: '
    

    这行代码是在处理来自摄像头输入时,将当前索引 i 添加到字符串 s 中,用于后续的日志记录或输出。

这段代码的主要功能是根据输入数据源的类型,灵活地为图像推理准备相应的数据。这包括:

  • 在网络摄像头情况下,从动态路劲和实时帧中提取图像和帧信息。
  • 在静态文件或视频源情况下,处理整批图像并提供相应的路径和计数。 通过这种方式,代码能够适应不同的输入形式,使得后续的推理过程更加高效和一致。
3.6.5.3 路径设置与初始化
p = Path(p)  # to Path
save_path = str(save_dir / p.name)  # im.jpg
txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}')  # im.txt

将路径 p 转换为 Path 类型,并生成保存图像和标签文件的路径。标签文件的命名基础上考虑了图像是否来自于视频帧。

这段代码的主要功能是处理图像路径,并生成用于保存的路径和标签文件的路径。以下是对每一行代码的逐步分解和详细解释:

  1. p = Path(p) # to Path

    • 这一行使用 Path 类将 p 转换为一个 Path 对象。Path 类来自 pathlib 模块,它提供了一种面向对象的方式来处理文件和目录路径。这使得后续对路径的操作更加灵活和方便。
  2. save_path = str(save_dir / p.name) # im.jpg

    • 这行代码创建了一个用于保存图像的路径。save_dir 是指定保存结果的目录,p.name 获取文件 p 的名称(不带路径)。
    • 通过 save_dir / p.name 合并目录和文件名,生成完整的保存路径。最后,使用 str() 将其转换为字符串格式,赋值给 save_path
  3. txt_path = str(save_dir / 'labels' / p.stem) + ('' if dataset.mode == 'image' else f'_{frame}') # im.txt

    • 这一行负责生成对应的标签文件的路径。
    • save_dir / 'labels' / p.stem 创建了一个路径,它指定了标签存储的目录,并且文件名是 p 的基础名(去掉了扩展名),使用 p.stem 来获取。
    • 接着,会根据 dataset.mode 的值来决定是否需要在文件名后添加帧编号:如果模式是 'image',则不添加任何内容;如果不是,则会在文件名后加上 _{frame}frame 是当前帧的编号。
    • 最后,将生成的路径转换为字符串并赋值给 txt_path

这段代码的主要功能是生成保存经过处理后的图像和对应标签的文件路径。通过使用面向对象的 Path 类,代码实现了路径的灵活处理,使得保存的图像能有清晰的命名和对应的标签文本文件,从而方便后续的存储和管理。

3.6.5.4 获取图像尺寸与归一化因子
s += '%gx%g ' % im.shape[2:]  # print string
gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]  # normalization gain whwh
imc = im0.copy() if save_crop else im0  # for save_crop

获取当前图像的尺寸并进行字符串格式化以输出,同时计算归一化因子用于后续的坐标变换。

这段代码的目的是在处理目标检测的推理结果时,准备打印和保存一些相关信息。我们逐行分解并详细解释这段代码。

  1. s += '%gx%g ' % im.shape[2:]

    • 这一行的作用是将当前处理图像的宽度和高度添加到字符串 s 中。
    • im.shape 得到的是张量 im(经过处理的图像)的形状信息,其中 im.shape[2:] 表示获取从索引2开始的所有维度(即高度和宽度),因为通常图像的形状格式为 (batch_size, channels, height, width)
    • '%gx%g ' 是格式字符串,%g 是表示浮点数的格式化, %后面的内容会被 im.shape[2:] 中的值替换,生成形如 640x640 (假设图像为640x640)这样的字符串。
  2. gn = torch.tensor(im0.shape)[[1, 0, 1, 0]]

    • 这一行通过将 im0 的形状变为张量来计算归一化的增益(normalization gain)。
    • im0.shape 通常是原图像的形状,以 (height, width, channels) 的格式表示(如 (480, 640, 3))。
    • 这个语句通过 [[1, 0, 1, 0]] 的索引将 im0 的维度顺序进行了调整,得到的结果是一个长度为4的张量,其中包含了宽度和高度的倍数,用于后面进行坐标变换。
  3. imc = im0.copy() if save_crop else im0

    • 这行代码用于创建一个副本图像 imc,如果需要保存裁剪框(save_crop 为 True),则使用原图像 im0 的副本;否则直接使用 im0
    • 这样的设计使得在裁剪的情况下不会修改原始图像数据,从而在后续处理时可以保持原图像不变。

这段代码主要用于目标检测过程中处理图像的维度信息和图像裁剪。其主要功能是:

  • 收集并记录当前图像的宽度和高度,以供后续参考及输出。
  • 根据原始图像 im0 的形状生成 normalization gain,这个增益在框坐标的转换中非常重要。
  • 准备一个图像副本 imc,用于保存裁剪后的结果,防止在处理时意外更改原始图像数据。

整体来看,上述代码帮助管理和存储与推理相关的重要图像信息和数据,确保图像处理的正确性和结果记录的完整性。

3.6.5.5 初始化标注器
annotator = Annotator(im0, line_width=line_thickness, example=str(names))

创建一个标注器对象,用于在图像上绘制检测框和标签。

这行代码的作用是创建一个用于在图像上绘制注释(例如边框和标签)的 Annotator 实例。下面是对该行代码的逐步分解和详细解释:

  1. Annotator:

    • Annotator 是一个类,用于在图像上添加标注,例如绘制边界框、存放类名和置信度等。
  2. im0:

    • im0 是一张图像,通常是原始图像的副本。它将在上面绘制检测结果(即边界框和相关信息)。
  3. line_width=line_thickness:

    • line_width 是一个参数,用于指定绘制的边界框的线条宽度。在这里,line_thickness 是之前定义的变量,表示线条厚度(单位为像素)。
  4. example=str(names):

    • example 参数提供了一个示例字符串,可能用于添加注释的示例文本。在此上下文中,names 通常是检测模型中定义的类名的列表(例如,检测到的物体类型),并将其转换为字符串类型(例如“人”、“车辆”等)。

这行代码的主要功能是初始化一个 Annotator 对象,用于在图像(im0)上添加可视化的标注信息。它通过指定线条宽度以控制画出的边界框的粗细,并且可以选择性地显示模型所识别的类别名称。该代码片段在目标检测任务中非常重要,因为它为用户提供了一种直观的方式来查看模型的检测结果和准确性。

3.6.5.6 判断是否有检测结果
if len(det):

检查当前图像是否有检测到的目标。

3.6.5.7 调整边界框位置
det[:, :4] = scale_boxes(im.shape[2:], det[:, :4], im0.shape).round()

将检测框的坐标从网络输出的尺寸(img_size)映射到实际图像 im0 的尺寸。

这行代码的目的是将目标检测的框(bounding boxes)从模型输入的图像大小(img_size)转换回原始图像的大小(im0)。以下是逐步分解和详细解释:

  1. 上下文背景

    • 当我们使用YOLO模型进行目标检测时,输入的图像往往会被缩放到特定的大小(如640x640像素)。但是,在进行目标检测后,我们需要将这些检测到的框转换回原始图像的坐标,以便在原始图像上正确地绘制或使用这些框。
  2. det[:, :4]

    • 这是一个切片操作,表示选择det(检测结果)数组中的所有行(即所有检测结果),但是只选择前四列。通常,这四列对应于每个检测框的坐标:x1, y1, x2, y2,分别表示框的左上角和右下角的坐标。
  3. scale_boxes(im.shape[2:], det[:, :4], im0.shape)

    • scale_boxes是一个函数,其作用是根据输入图像的尺寸将检测框的坐标缩放到原始图像的尺寸。
    • im.shape[2:]返回图像的高度和宽度(通常为(640, 640)),这就是模型接收的图像输入的大小。
    • det[:, :4]是之前提到的检测框的坐标。
    • im0.shape是原始图像的尺寸,通常为(height, width, channels),在这里我们只需要使用前两个维度(高度和宽度)。
  4. .round()

    • round()是一个NumPy方法,用于对检测框的坐标取整。由于坐标是浮点数,我们需要将它们转换为整数,以便在图像上正确绘制。

 这行代码的主要功能是:

将模型在缩放图像上生成的目标检测框的坐标转换为原始图像的坐标,以便后续可以在原始图像上进行框的绘制和结果的展示。这是目标检测工作流中一个关键的步骤,确保检测结果能够在实际的图像上正确反映出来。

3.6.5.8 输出结果信息
for c in det[:, 5].unique():
    n = (det[:, 5] == c).sum()  # detections per class
    s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "  # add to string

对每个类的检测结果进行统计,并生成相应的输出字符串。

这段代码的作用是处理检测结果,统计每个类别的检测数量,并构建一个字符串以便于后续的输出和显示。

  1. for c in det[:, 5].unique():

    • det是一个包含检测结果的张量(tensor),其中每一行对应一个检测到的对象,每一列对应不同的信息。其中,第6列(索引为5)包含了检测到的对象的类别ID(class ID)。
    • det[:, 5]提取所有检测结果的类别ID。
    • .unique()方法返回检测到的唯一类别ID。这表示对于检测到的每种类别,代码将会进行后续的处理。
  2. n = (det[:, 5] == c).sum()

    • 这行代码计算当前类别c的检测数量。
    • det[:, 5] == c会返回一个布尔张量,表示每个检测结果的类别是否等于c
    • .sum()将布尔值(True为1,False为0)进行求和,从而得到当前类别在所有检测中的总数。
  3. s += f"{n} {names[int(c)]}{'s' * (n > 1)}, "

    • 这行代码将当前类别的检测数量和类别名称添加到字符串s中。
    • names[int(c)]是通过类别ID获取类别的名称,names是一个列表或字典,存储了各个类别的名称。
    • {'s' * (n > 1)}根据检测数量n是否大于1来决定是否在类别名称后加上‘s’字母,以使得单复数形式正确(如“1 car” vs “2 cars”)。
    • 最后,加上一个逗号和空格,以便于后续结果的拼接。

总结上述部分代码的主要功能: 这段代码的主要功能在于统计和输出检测结果中每个类别的检测数量。通过遍历每一个唯一的检测类别,计算对应数量,并且将其格式化为合适的字符串形式,便于后续的展示和记录。这是目标检测中一个重要的步骤,旨在提供每个类别的检测效率和结果反馈。

3.6.5.9 保存检测结果
                # Write results
                for *xyxy, conf, cls in reversed(det):
                    if save_txt:  # Write to file
                        xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist()  # normalized xywh
                        line = (cls, *xywh, conf) if save_conf else (cls, *xywh)  # label format
                        with open(f'{txt_path}.txt', 'a') as f:
                            f.write(('%g ' * len(line)).rstrip() % line + '\n')

                    if save_img or save_crop or view_img:  # Add bbox to image
                        c = int(cls)  # integer class
                        label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}')
                        annotator.box_label(xyxy, label, color=colors(c, True))
                    if save_crop:
                        save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True)

遍历每个检测到的目标,分别保存检测框的信息到文本文件、在图像上绘制框框、并可选择保存被裁剪的目标图像。

这段代码是处理目标检测结果的重要部分。其主要功能是根据检测到的物体的坐标和置信度信息,选择性地保存检测结果到文本文件,并将结果绘制到图像上。下面逐步分解并详细解释代码:

  1. *for xyxy, conf, cls in reversed(det):

    • 这里的det是一个包含检测结果的列表,其中每个元素是一个数组,表示检测到的目标的坐标、置信度和类别。
    • 使用reversed(det)反向遍历检测到的物体,通常是为了从高置信度的目标开始处理(在后续代码中可能更为重要,具体取决于检测结果的排序方式)。
    • *xyxy表示物体的边界框坐标(左上角和右下角的x、y坐标),conf表示置信度,cls表示类别。
  2. if save_txt:

    • 判断是否需要将检测结果保存到文本文件中。
  3. xywh = (xyxy2xywh(torch.tensor(xyxy).view(1, 4)) / gn).view(-1).tolist():

    • 将边界框坐标从 (x1, y1, x2, y2) 格式转换为 (x_center, y_center, width, height) 格式。
    • torch.tensor(xyxy).view(1, 4) 将坐标列表转换为 Tensor。
    • xyxy2xywh 是一个函数,它完成实际的转换过程。
    • / gn 是用来归一化的,其中 gn 代表原图的宽和高。
    • view(-1).tolist() 将 Tensor 转换为 Python 列表以用于后续处理。
  4. **line = (cls, xywh, conf) if save_conf else (cls, xywh):

    • 创建要写入文件的行。如果save_conf为真,则将类别、归一化的坐标和置信度写入;否则仅写入类别和坐标。
  5. with open(f'{txt_path}.txt', 'a') as f:

    • 打开文本文件,文件名由txt_path决定,模式为追加('a'),以便保留之前的内容。
  6. f.write(('%g ' * len(line)).rstrip() % line + '\n'):

    • 使用指定的格式将行写入文件。('%g ' * len(line)).rstrip() % line 根据line的长度动态生成格式。
    • 最后添加换行符,确保每个检测结果占据一行。
  7. if save_img or save_crop or view_img:

    • 判断是否需要将检测结果绘制到图像上,或保存裁剪后的图片。
  8. c = int(cls):

    • 将类别转换为整数类型,以便使用颜色和标签。
  9. label = None if hide_labels else (names[c] if hide_conf else f'{names[c]} {conf:.2f}'):

    • 根据设置决定标签的文本内容。如果hide_labels为真,则不显示标签;如果hide_conf为真,则只显示类别名称,否者还包括置信度。
  10. annotator.box_label(xyxy, label, color=colors(c, True)):

    • 使用指定的颜色和标签绘制边界框到图像上。
  11. if save_crop:

    • 判断是否需要保存裁剪后的目标框。
  12. save_one_box(xyxy, imc, file=save_dir / 'crops' / names[c] / f'{p.stem}.jpg', BGR=True):

    • 调用save_one_box函数将裁剪后的目标保存为图像文件,路径由保存目录和类别名称确定。

这段代码负责处理检测结果,通过将结果写入文本文件和绘制到图像上来记录物体检测的输出。它通过归一化坐标、选择性地保存文件、在图像上添加边界框和标签等方式,提供了对检测结果的详细记录和可视化,适用于分析和验证目标检测模型的性能。

3.6.6 查看图像

            # Stream results
            im0 = annotator.result()
            if view_img:
                if platform.system() == 'Linux' and p not in windows:
                    windows.append(p)
                    cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO)  # allow window resize (Linux)
                    cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0])
                cv2.imshow(str(p), im0)
                cv2.waitKey(1)  # 1 millisecond

代码逐步分解解释如下:

  1. im0 = annotator.result():

    • 这行代码调用 annotator 对象的 result() 方法,将图像处理后的结果存储在 im0 变量中。annotator 是用于在图像上绘制边界框、标签等信息的工具,result() 方法返回的是带有标注的信息的图像。
  2. if view_img::

    • 这行代码检查 view_img 变量的值,如果为 True,则表示用户希望在窗口中查看图像。
  3. if platform.system() == 'Linux' and p not in windows::

    • 这行代码首先获取当前操作系统的名称,如果是 Linux 且当前图像的窗口 p 不在 windows 列表中,则执行以下操作。这是为了避免重复创建同一个窗口。
  4. windows.append(p):

    • 如果上述条件成立,将当前窗口 p 添加到 windows 列表中,用于跟踪已创建的窗口。
  5. cv2.namedWindow(str(p), cv2.WINDOW_NORMAL | cv2.WINDOW_KEEPRATIO):

    • 这行代码使用 OpenCV 的 namedWindow 函数创建一个名为 p 的窗口,窗口属性设置为 WINDOW_NORMAL(允许自由调整大小)和 WINDOW_KEEPRATIO(保持窗口宽高比)。
  6. cv2.resizeWindow(str(p), im0.shape[1], im0.shape[0]):

    • 使用 resizeWindow 调整窗口的大小以适应图像 im0 的宽度和高度。im0.shape[1] 表示图像的宽度,im0.shape[0] 表示图像的高度。
  7. cv2.imshow(str(p), im0):

    • 使用 imshow 函数显示图像 im0 在窗口 p 中。
  8. cv2.waitKey(1):

    • 这行代码使程序等待一个毫秒,参数 1 指定了等待的时间。这个调用使得窗口能够及时更新并响应用户的操作。

这段代码的主要功能是显示经过处理的图像并允许用户在窗口中查看结果。如果用户选择查看图像(view_img 为 True),代码会创建一个窗口来展示带有检测结果的图像,并确保窗口的尺寸和比例与图像一致。它还会在 Linux 系统中采取额外措施以避免重复创建相同的窗口。这使得图像检测的结果能及时反馈给用户。

3.6.7 保存结果

            # Save results (image with detections)
            if save_img:
                if dataset.mode == 'image':
                    cv2.imwrite(save_path, im0)
                else:  # 'video' or 'stream'
                    if vid_path[i] != save_path:  # new video
                        vid_path[i] = save_path
                        if isinstance(vid_writer[i], cv2.VideoWriter):
                            vid_writer[i].release()  # release previous video writer
                        if vid_cap:  # video
                            fps = vid_cap.get(cv2.CAP_PROP_FPS)
                            w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
                            h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
                        else:  # stream
                            fps, w, h = 30, im0.shape[1], im0.shape[0]
                        save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
                        vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
                    vid_writer[i].write(im0)

 这段代码主要负责保存包含检测结果的图像或视频流。下面将逐步分解并详细解释每一部分。

  1. 检查是否需要保存图像:

    if save_img:
    

    这行代码判断 save_img 变量是否为 True,如果是,则进入保存结果的逻辑。save_img 变量通常是在程序运行时通过命令行参数或默认设定来指定的。

  2. 判断数据集模式:

    if dataset.mode == 'image':
        cv2.imwrite(save_path, im0)
    

    这里判断数据集是图像模式。如果当前处理的是单张图像(即 dataset.mode 为 'image'),则使用 OpenCV 的 cv2.imwrite 函数将处理后的图像 im0 保存到指定的 save_path 路径下。

  3. 处理视频或流的情况:

    else:  # 'video' or 'stream'
    

    如果数据集模式不是图像,说明处理的是视频或流。

    • 检查是否为新视频:

      if vid_path[i] != save_path:  # new video
      

      这行代码检查当前视频路径 vid_path[i] 是否与 save_path 不同。如果不同,说明正在处理一个新的视频。

    • 更新视频路径:

      vid_path[i] = save_path
      

      更新 vid_path[i] 为当前的 save_path

    • 释放之前的视频写入器:

      if isinstance(vid_writer[i], cv2.VideoWriter):
          vid_writer[i].release()  # release previous video writer
      

      如果 vid_writer[i] 是一个 cv2.VideoWriter 实例,则调用其 release 方法释放之前创建的视频写入器,以便为新的写入器腾出资源。

    • 获取视频的帧率和尺寸:

      if vid_cap:  # video
          fps = vid_cap.get(cv2.CAP_PROP_FPS)
          w = int(vid_cap.get(cv2.CAP_PROP_FRAME_WIDTH))
          h = int(vid_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))
      else:  # stream
          fps, w, h = 30, im0.shape[1], im0.shape[0]
      

      接下来,如果 vid_cap 不为空,说明正在处理的视频,通过 vid_cap.get 方法获取视频的帧率(FPS)和图像的宽高。如果 vid_cap 为 None,则默认将帧率设为 30,并使用 im0 的宽高作为视频的尺寸。

    • 创建视频写入器实例:

      save_path = str(Path(save_path).with_suffix('.mp4'))  # force *.mp4 suffix on results videos
      vid_writer[i] = cv2.VideoWriter(save_path, cv2.VideoWriter_fourcc(*'mp4v'), fps, (w, h))
      

      将 save_path 的后缀强制设置为 .mp4,然后创建一个新的 cv2.VideoWriter 实例用于写入处理后的帧。

    • 写入当前帧:

      vid_writer[i].write(im0)
      

      最后,使用 vid_writer[i].write(im0) 将处理后的图像 im0 写入到视频文件中。

这段代码的主要功能是处理根据数据来源将有检测结果的图像或视频帧保存到指定路径。对于图像,直接保存为文件;对于视频或流,检查是否为新的输入,创建或更新写入器,然后将图像写入到视频文件中。这是 YOLOv5 模型应用在对象检测后保存结果的重要环节。

 3.7 记录与输出结果

# Print results
    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)

这段代码主要是用来输出YOLOv5模型在图像处理和推断过程中的相关信息,便于用户观察模型的性能和结果。下面逐步分解并详细解释每一部分:

  1. 计算处理速度:

    t = tuple(x.t / seen * 1E3 for x in dt)  # speeds per image
    
    • dt 是一个包含三个 Profile 对象的元组(通常用于记录不同阶段的时间)。
    • seen 是处理过的图像数量。
    • 这行代码通过将时间除以处理过的图像数量,然后乘以1000,将速度转换成毫秒(ms),从而得到每张图像在预处理、推理和NMS(非极大值抑制)阶段的平均耗时。
  2. 日志记录处理速度:

    LOGGER.info(f'Speed: %.1fms pre-process, %.1fms inference, %.1fms NMS per image at shape {(1, 3, *imgsz)}' % t)
    

    通过 LOGGER.info 输出处理速度信息,包括预处理时间、推理时间和NMS时间。输出格式化字符串显示了每个阶段的速度以及输入图像的形状(例如:(1, 3, 640, 640))。

  3. 保存结果信息:

    if save_txt or save_img:
        s = f"\n{len(list(save_dir.glob('labels/*.txt')))} labels saved to {save_dir / 'labels'}" if save_txt else ''
        LOGGER.info(f"Results saved to {colorstr('bold', save_dir)}{s}")
    
    • 如果用户选择保存文本结果(save_txt)或图像结果(save_img),则会计算并日志记录保存的标签数量。
    • save_dir.glob('labels/*.txt') 用于查找保存目录下所有的标签文件,返回文件的数量。
    • 最后,通过 LOGGER.info 输出保存结果的路径。
  4. 模型更新:

    if update:
        strip_optimizer(weights[0])  # update model (to fix SourceChangeWarning)
    

    如果用户选择更新模型(update为真),则调用 strip_optimizer 函数来更新模型,去除不必要的部分,以修复可能出现的 SourceChangeWarning 警告。

这段代码的主要功能是记录和输出YOLOv5模型在不同阶段的处理速度,展示处理效率,同时在检测结束后提供关于结果保存的反馈信息。如果需要更新模型,也会进行相应的更新处理。通过这些日志信息,用户能够了解模型的性能表现和结果存储情况,从而进行进一步分析和优化。

3.8 总结

这段代码的主要功能是处理目标检测模型的输出结果。它的核心操作包括:

  • 遍历检测结果,准备路径和格式化输出;
  • 处理目标检测的输出,包括调整边界框的坐标、统计每个类的目标数量;
  • 将结果写入文本文件,并在原图上绘制边界框和标签,最终可选择保存图像和裁剪的目标区域。

整个过程确保了模型检测的高效处理与结果的有效记录,为后续分析或可视化提供基础数据。

显示和保存结果

  • 如果设置了显示结果,使用 OpenCV 在窗口中展示。
  • 保存带有检测结果的图像或视频。
  1. 记录执行时间

    • 打印推断过程的时间统计信息。
  2. 完成后处理

    • 如果需要更新模型,则执行模型更新操作。

参考:

  1. YOLOv5系列(四) 解析推理部分detect(详尽)
PaddlePaddle是一个开源的深度学习平台,可以用于构建和训练深度学习模型。如果你想使用PaddlePaddle,可以通过源码编译的方式来安装。首先,你需要在Git Bash中执行以下两条命令来将PaddlePaddle的源码克隆到本地,并进入Paddle目录: ``` git clone https://github.com/PaddlePaddle/Paddle.git cd Paddle ``` 接下来,你可以根据自己的需求进行编译。如果你使用的是Windows系统,可以使用源码编译来安装符合你需求的PaddlePaddle版本。具体的编译步骤可以参考官方文档中的Windows下源码编译部分\[2\]。 如果你想在docker镜像中编译PaddlePaddle,可以使用以下命令启动docker镜像并进行编译。如果你需要编译CPU版本,可以使用以下命令: ``` sudo docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-dev /bin/bash ``` 如果你需要编译GPU版本,可以使用以下命令: ``` sudo nvidia-docker run --name paddle-test -v $PWD:/paddle --network=host -it hub.baidubce.com/paddlepaddle/paddle:latest-dev /bin/bash ``` 以上是关于使用源码编译PaddlePaddle的一些基本步骤和命令。你可以根据自己的需求和操作系统选择适合的方式来安装PaddlePaddle。 #### 引用[.reference_title] - *1* *2* *3* [《PaddlePaddle从入门到炼丹》一——新版本PaddlePaddle的安装](https://blog.csdn.net/qq_33200967/article/details/83052060)[target="_blank" data-report-click={"spm":"1018.2226.3001.9630","extra":{"utm_source":"vip_chatgpt_common_search_pc_result","utm_medium":"distribute.pc_search_result.none-task-cask-2~all~insert_cask~default-1-null.142^v91^control,239^v3^insert_chatgpt"}} ] [.reference_item] [ .reference_list ]
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值