YOLOv9 损失函数解析

YOLOv9作为YOLO系列的最新成员,在损失函数设计上进行了多项创新,重点优化了动态任务对齐机制多模态定位损失融合以及跨层级梯度协同,进一步提升了检测精度与训练效率。以下是对其损失函数的详细解析:


一、总体损失构成

YOLOv9的总损失由定位损失(DFL++ + MPDIoU)​分类损失(AdaVFL)​置信度损失(TASC Loss)​跨层级一致性损失组成,公式表示为:


二、核心损失函数解析

1. ​定位损失(DFL++ + MPDIoU)​

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值