YOLOv9作为YOLO系列的最新成员,在损失函数设计上进行了多项创新,重点优化了动态任务对齐机制、多模态定位损失融合以及跨层级梯度协同,进一步提升了检测精度与训练效率。以下是对其损失函数的详细解析:
一、总体损失构成
YOLOv9的总损失由定位损失(DFL++ + MPDIoU)、分类损失(AdaVFL)、置信度损失(TASC Loss)及跨层级一致性损失组成,公式表示为:
YOLOv9作为YOLO系列的最新成员,在损失函数设计上进行了多项创新,重点优化了动态任务对齐机制、多模态定位损失融合以及跨层级梯度协同,进一步提升了检测精度与训练效率。以下是对其损失函数的详细解析:
YOLOv9的总损失由定位损失(DFL++ + MPDIoU)、分类损失(AdaVFL)、置信度损失(TASC Loss)及跨层级一致性损失组成,公式表示为: