【YOLACT 】核心思想的解析

YOLACT 将实例分割任务转化为“基向量组合”问题的核心思想,是通过生成一组基础分割模板(原型掩模)​,再为每个实例预测一组组合系数,动态地将这些基础模板线性组合成最终的实例掩码。这种设计将复杂的像素级预测简化为系数驱动的模板合成,极大提升了效率。以下是详细解释:


一、核心思想分解

1. ​基向量(原型掩模)的生成

  • 基向量定义​:
    基向量是一组全局的、类别无关的基础分割模板(如边缘、圆形、纹理等),每个模板对应一个原型掩模 Pi​∈RH×W(H,W 为特征图尺寸)。
  • 生成方式​:
    通过 ​Protonet​(轻量级全卷积网络)从主干网络特征中提取。例如,输入特征图尺寸为 81​ 原图(如 100×100),生成 32 个原型掩模。
  • 物理意义​:
    每个原型捕捉一种通用分割模式(如“物体边缘”、“密集纹理”、“规则几何形状”),覆盖图像中可能存在的各种局部特征。

2. ​实例系数的预测

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

浩瀚之水_csdn

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值