GFLv2
(一)Title
论文地址:https://arxiv.org/abs/2011.12885
代码地址:https://github.com/implus/GFocalV2
前言:GFLv1文章名:Generalized Focal Loss Learning Qualified and Distributed Bounding Boxes for Dense Object Detection。GFLv1已经很漂亮了,没想到GFLv2能利用分布的统计特征来进行定位质量估计,而且还取得优于卷积特征的效果,感觉作者太强了也。
(二)Summary
目前Localization Quality Estimation(LQE)在目标检测中是很Popular的一种做法,能够产生更加准确的rank scores用于NMS,从而提升性能。
通常的估计Localization Quality 的方法是通过分类分支或者回归分支的共享卷积特征来预测LQE分数(这说的是IoU-aware single-stage object detetor那篇文章,这篇文章在我的博客同样有论文阅读笔记)
本文中作者提出基于学习到的bounding box四个参数的分布来进行LQE(Localization Quality Estimation)
这个bounding box的分布在GFLv1(博客)中提到,并且很好地描述了bounding box的不确定性。
作者提出bounding box的统计分布和它真实的定位质量是高度相关的。
具有sharp peak的边界框分布通常对应于high localization quality
从上图中可以看出,峰越高表示的定位质量就越好,
因此在本文中作者利用上这个关系,作者提出了一个相当轻量级的Distribution-Guided Quality Predictor(DGQP)进行可靠的定位质量估计。从而产生了GFLv2,这是首个利用高度相关的统计表示方法进行的Localization Quality Estimation
性能表现
GFLV2 (ResNet-101)以14.6FPS取得了46.2的AP值,超过了baseline(43.6AP at 14.6 FPS),在训练和测试阶段都没有损失效率。
文章的主要贡献点
- 首个将统计分布和定位质量估计结合起来的端到端的目标检测框架。
- GFLv2中的DGQP子网络很轻量级,基本上的cost-free的,但是同时在性能上可以提升AP指标。
- 使用多尺度测试,使得GFLV2取得了53.3的AP,在COCO数据集上。
(三)Research Object
目前研究者的工作主要集中在如何进行更加准确的LQE(定位质量估计),大多数研究者的工作基于卷积特征进行定位质量的估计,在GFLv1中将定位质量(IoU)和classfication score进行联合表示,但是进行定位质量估计仍然使用的是卷积特征,在本文中,我们受到GFLv1中预测的box分布和Localization Quality之间强相关性的启发,提出利用分布统计来进行定位质量的估计。
(四)Problem Statement
目前进行定位质量估计(LQE)基本上是基于卷积特征(点,边界或者区域的特征)。我们从GFLv1得到的box分布中得到启发,可以基于box4个边分布的Top-1(峰值)来估计定位质量,两者之间是具有较强的相关性的。受上述box分布和定位质量之间强相关性的启发,作者提出一个非常轻量级的子网络sub-network,只有几十个(例如,64个)隐藏单元,在这些分布统计的基础上产生可靠的LQE分数,显著提高了检测性能。作者称这个轻量级的子网络为Distribution-Guided Quality Predictor(DGQP)
(五)Method
5.1 GFL(Generalized Focal Loss)v1
Quality Focal Loss
c ∈ { 1 , 2 , … , m } c \in\{1,2, \ldots, m\} c∈{
1,2,…,m},其中 m m m表示类别数,GFLv1利用类别分支来产生类别和IoU的联合表示,对应m个类别的输出分别为 J = [ J 1 , J 2 , … , J m ] \mathbf{J}=\left[J_{1}, J_{2}, \ldots, J_{m}\right] J=[J1,J2,…,Jm],其中每一项为:
J i = { IoU ( b pred , b g t ) , if i = c 0 , otherwise J_{i}=\left\{\begin{array}{ll} \operatorname{IoU}\left(b_{\text {pred}}, b_{g t}\right), & \text { if } i=c \\ 0, & \text { otherwise } \end{array}\right. Ji={
IoU(bpred,bgt),0, if i=c otherwise
也就是利用真实的IoU的值来代替类别标签1.
Distribution Focal Loss
目前目标检测中用于描述bounding box的分布往往是 δ \delta δ分布,或者高斯分布,在GFLv1中提出使用任意分布 P ( x ) P(x) P(x)描述bounding box。对于回归目标我们看成是随机变量 Y Y Y,我们限定Y的取值范围为 [ y 0 , y n ] [y_0,y_n] [y0,yn]之间,那么我们计算分布对应的期望值为:
y ^ = ∫ − ∞ + ∞ P ( x ) x d x = ∫