《Generalized Focal Loss V2》论文笔记

参考代码:GFocalV2

1. 概述

导读:这篇文章是在之前V1版本的基础上增强了目标检测中定位质量估计能力。在之前的一些网络中会在分类分支和检测分支的特征图基础上实现定位质量的估计(如IoUNet、FCOS),但是会存在training和infer阶段的gap。对此在GFocal V1的版本中提出了质量感知的预测头,从而弥补了training和infer的gap。而这篇文章更进一步使用4个边界框的概率分布作为额外信息输入,使得质量感知分支能够获取检测框边界的信息,从而进一步提升质量感知分支的准确度。

在之前的一些工作中使用分类或是边界框回归分支特征图作为输入组合,并在此基础上实现对检测框质量的感知,其结构见下图左图所示:
在这里插入图片描述
但是上图的左图却存在回归分支是否能准确表达检测框的问题,对此这里考虑了GFocal V1版本中4条边的概率分布与实际检测框边界质量的关系,通过文章的分析若边界框的概率分布呈现尖峰分布情况则表明该检测框边界的定位质量是较高的,反之亦然。因而可以利用GFocal V1生成的检测框边界分布去描述实际的检测质量,因而对上图左图中回归分支部分进行修改,便得到了右图的模式,既是使用检测边界框的概率分布来生成更好的检测质量评估。

2. 方法设计

2.1 pipeline

文章的pipeline见下图所示,其主要的改进点在检测质量评估分支上,也就是显式使用了检测框的概率分布特征,也就是下图中红色虚线部分展示的部分(DGQP:Distribution-Guided Quality Predictor)。
在这里插入图片描述

2.2 DGQP运算过程

使用GFocal中描述到的检测边界框的概率分布描述,可以将目标检测涉及到的4条边界的分布描述为: P w = [ P w ( y 0 ) , … , P w ( y n ) ] , ∀ w ∈ [ l , r , b , t ] P^w=[P^w(y_0),\dots,P^w(y_n)],\forall{w}\in[l,r,b,t] Pw=[Pw(y0

  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值