矩阵论知识点篇
- 名词定义及相关定理汇总
- 1. 集合与元素
- 2. 数环(加减乘封闭)
- 3. 数域(加减乘除全部封闭)
- 4. 线性空间
- 5. 线性组合/线性表出、线性相关
- 6. 线性相关定理
- 7. 线性空间的维度
- 8. 线性空间的基(是基向量集合)
- 9. 基变换(线性空间中两组基的转换)
- 10. 过渡矩阵性质(多次先换)
- 11. 坐标变换(向量x在基变换下的坐标变换)
- 12. 线性子空间定义
- 13. 线性子空间定理
- 14. 方程组的解空间
- 15. 解空间的维度和基(继承7,8)
- 16. 由向量组张成的子空间
- 17. 扩基定理
- 18. 矩阵的值域(继承16)
- 19. 矩阵的核空间\零空间、零度
- 20. 多个线性空间的交空间、和空间
- 21. 子空间的交空间、和空间相关性质
- 22. 维度公式
- 23. 直和
- 24. 映射(原象x,象y)
- 25. 映射的性质
- 26. 同态映射、同构映射
- 27. 线性变换(针对线性空间)及其性质
- 28. 线性变换的和
- 29. 线性变换的乘积
- 30. 线性变换的逆
- 31. 线性变换的多项式 (C3 end)
- 32. 线性变化的矩阵表示
- 33. 线性变换的值域、核
- 34. 线性变换的秩与亏
- 35. T与A与基象组的关系
- 36. 坐标变换(向量在线性变换下的坐标变换)
- 37. 线性变换的对应矩阵A和基变换过渡矩阵C的关系
- 38. 线性变换的特征值与特征向量(由基定义,但与基无关)
- 39. 线性变换与矩阵的特征值与特征向量的关系
- 40. 线性变换T的特征子空间
- 41. 特征多项式 ∣ λ I − A ∣ |\lambda I-A| ∣λI−A∣的有关性质
- 42. 相似矩阵的性质(任意 n n n 阶矩阵 A A A 与三角矩阵相似)
- 43. Hamilton-Caylay定理(特征矩阵A是其特征多项式的零点)
- 44. 矩阵的最小多项式
- 45. 可对角化
- 46. 求对角化方法
- 47. 不变子空间
- 48. 常见不变子空间
- 49. 连续的线性变换的定理
- 50. λ − \lambda- λ−矩阵
- 51. Jordan标准形
- 52. 初等因子
- 53. 欧式空间
- 54. n维欧氏空间中内积的矩阵表示
- 55. 柯西-布涅柯夫斯基不等式
- 56. 标准正交基的特征
- 57. 欧式空间的子空间
- 58. 欧氏空间中的正交变换
- 59. 正交矩阵
- 60. n n n 维欧氏空间中正交变换的分类
- 61. 欧氏空间中的对称变换
- 62. 酉空间
- 62.5 Hermite变换与Hermite矩阵
- 63. 正规矩阵
- 64. 矩阵 A A A 的谱分解
名词定义及相关定理汇总
1. 集合与元素
M是具有某些性质的全部元素所组成的集合, M = { a ∣ a \boldsymbol{M}=\{a \mid a M={a∣a 所具有的性质 } \} }
2. 数环(加减乘封闭)
设Z是一个非空数集,且其中任意两个数的和、差和积仍属于Z,则称Z是一个数环
3. 数域(加减乘除全部封闭)
关于四则运算封闭的数的集合,如复数域C;实数域R;有理数域Q
4. 线性空间
在数域K上满足封闭加法和数乘运算的非空集合V
PS: 在矩阵论中,某某空间都是具有某些性质的向量的集合。
5. 线性组合/线性表出、线性相关
- 一个向量的线性表出:一组向量和一组数,构成的新向量 x = k 1 x 1 + k 2 x 2 + ⋯ + k r x r \boldsymbol{x}=k_{1} \boldsymbol{x}_{1}+k_{2} \boldsymbol{x}_{2}+\cdots+k_{r} \boldsymbol{x}_{r} x=k1x1+k2x2+⋯+krxr称为线性组合/线性表出。
- 一个向量组之间的线性相关:如果存在不全为0的数k,使得 0 = k 1 x 1 + k 2 x 2 + ⋯ + k r x r \boldsymbol{0}=k_{1} \boldsymbol{x}_{1}+k_{2} \boldsymbol{x}_{2}+\cdots+k_{r} \boldsymbol{x}_{r} 0=k1x1+k2x2+⋯+krxr,称这组向量组线性相关,否则成为线性无关。
- 向量组线性相关等价于向量组中至少存在一个向量可由其余的向量线性表出。
- 向量组的线性表出:向量组 I \mathbf{I} I: α 1 , α 2 , … , α r ; \alpha_{1}, \alpha_{2}, \ldots, \alpha_{r} ; \quad α1,α2,…,αr; I I \mathbf{II} II: β 1 , β 2 , … , β s \beta_{1}, \beta_{2}, \ldots, \beta_{s} β1,β2,…,βs;若组 I \mathbf{I} I 中每一个向量都可由组 I I \mathbf{II} II中的向量线性表出, 则称组I可由组II线性表出。
- 两个向量组的等价:若组 I \mathbf{I} I与组 I I \mathbf{II} II可以互相线性表出, 则称组 I \mathbf{I} I与组 I I \mathbf{II} II等价. PS:两个等价的线性无关的向量组,必含有相同数量的向量
6. 线性相关定理
- 单个向量 x x x 线性相关的充要条件是 x = 0 x=0 x=0 。两个以上的向量线性相关的充要条件是其中有一个向量是其余向量的线性组合。
- 如果向量组 x 1 , x 2 , ⋯ , x r \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{r} x1,x2,⋯,xr 线性无关, 而且可以被向量组 y 1 , y 2 , ⋯ , y s \boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{s} y1,y2,⋯,ys 线性表出, 那么 r ≤ s r \leq s r≤s
- 如果向量组 x 1 , x 2 , ⋯ , x r \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{r} x1,x2,⋯,xr 线性无关, 但向量 组 x 1 , x 2 , ⋯ , x r , y \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{r}, y x1,x2,⋯,xr,y 线性相关, 那么 y \boldsymbol{y} y 可以由 x 1 , x 2 , ⋯ , x r \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{r} x1,x2,⋯,xr 线性表出, 而且表示法唯一
7. 线性空间的维度
线性空间 V V V 中线性无关向量组所含向量最大个数 n n n 称为 V \boldsymbol{V} V 的维数, 记做 dim V = n \operatorname{dim} \boldsymbol{V}=n dimV=n。PS:也是基向量的个数
8. 线性空间的基(是基向量集合)
x 1 , x 2 , ⋯ , x r \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{r} x1,x2,⋯,xr 是 V \mathrm{V} V 的一个基或基底, 这组向量1)线性无关,2)V中其他向量可由这组向量线性表出。
9. 基变换(线性空间中两组基的转换)
( y 1 , y 2 , ⋯ , y n ) ≜ ( x 1 , x 2 , ⋯ , x n ) C \left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{n}\right)\triangleq\left(x_{1}, x_{2}, \cdots, x_{n}\right) C (y1,y2,⋯,yn)≜(x1,x2,⋯,xn)C,新基=旧基*过渡矩阵
10. 过渡矩阵性质(多次先换)
- 过渡矩阵都是可逆矩阵
- 若由基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 到基 y 1 , y 2 , ⋯ , y n y_{1}, y_{2}, \cdots, y_{n} y1,y2,⋯,yn 过渡矩阵为 C C C, 则由基 y 1 , y 2 , ⋯ , y n y_{1}, y_{2}, \cdots, y_{n} y1,y2,⋯,yn 到基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 过渡矩阵为 C − 1 C^{-1} C−1,
- 若由基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 到基 y 1 , y 2 , ⋯ , y n y_{1}, y_{2}, \cdots, y_{n} y1,y2,⋯,yn 过渡矩阵为 C C C, 由基 y 1 , y 2 , ⋯ , y n y_{1}, y_{2}, \cdots, y_{n} y1,y2,⋯,yn 到基 z 1 , z 2 , ⋯ , z n z_{1}, z_{2}, \cdots, z_{n} z1,z2,⋯,zn 过渡矩阵为 B B B , 则 由基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 到基 z 1 , z 2 , ⋯ , z n z_{1}, z_{2}, \cdots, z_{n} z1,z2,⋯,zn 过渡矩阵为 C B C B CB.
11. 坐标变换(向量x在基变换下的坐标变换)
(注意和36做一下对比)
已知:
- ( y 1 , y 2 , ⋯ , y n ) = ( x 1 , x 2 , ⋯ , x n ) C \left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{n}\right)=\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right)C (y1,y2,⋯,yn)=(x1,x2,⋯,xn)C
- x在 ( x 1 , x 2 , ⋯ , x n ) \left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right) (x1,x2,⋯,xn)下的坐标为 ( ξ 1 , ξ 2 , ⋯ , ξ n ) T \left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)^{T} (ξ1,ξ2,⋯,ξn)T
- x在 ( y 1 , y 2 , ⋯ , y n ) \left(\boldsymbol{y}_{1}, \boldsymbol{y}_{2}, \cdots, \boldsymbol{y}_{n}\right) (y1,y2,⋯,yn)下的坐标为 ( η 1 , η 2 , ⋯ , η n ) T \left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right)^{T} (η1,η2,⋯,ηn)T
结论:(概括为象坐标=逆过渡矩阵对基象坐标的变换)
- ( ξ 1 ξ 2 ⋮ ξ n ) = C ( η 1 η 2 ⋮ η n ) \left(\begin{array}{c}\xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n}\end{array}\right)=C\left(\begin{array}{c}\eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{n}\end{array}\right) ⎝⎜⎜⎜⎛ξ1ξ2⋮ξn⎠⎟⎟⎟⎞=C⎝⎜⎜⎜⎛η1η2⋮ηn⎠⎟⎟⎟⎞
- ( η 1 η 2 ⋮ η n ) = C − 1 ( ξ 1 ξ 2 ⋮ ξ n ) \left(\begin{array}{c}\eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{n}\end{array}\right)=C^{-1}\left(\begin{array}{c}\xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n}\end{array}\right) ⎝⎜⎜⎜⎛η1η2⋮ηn⎠⎟⎟⎟⎞=C−1⎝⎜⎜⎜⎛ξ1ξ2⋮ξn⎠⎟⎟⎟⎞
12. 线性子空间定义
V 1 V_1 V1是 V V V的线性子空间或子空间,满足:
- V 1 V_1 V1是 V V V的非空子集
- V 1 V_1 V1在给定的数域K上满足闭合线性运算
13. 线性子空间定理
V 1 V_{1} V1 是数域 K K K 上的线性空间 V V V 上一个非空子空间 ⟺ ∀ x , y ∈ V 1 , ∀ k , l ∈ K \Longleftrightarrow \forall \boldsymbol{x}, \boldsymbol{y} \in \boldsymbol{V}_{1}, \forall k, l \in \boldsymbol{K} ⟺∀x,y∈V1,∀k,l∈K 有 ∃ k x + l y ∈ V 1 \exists k \boldsymbol{x}+l \boldsymbol{y} \in \boldsymbol{V}_{1} ∃kx+ly∈V1
判断一个子集合是否为 R n R^{n} Rn的子空间,即选取对应子集合元素验证其是否在 R n R^{n} Rn上满足加法和数乘的封闭性。
14. 方程组的解空间
对于n元齐次线性方程组: { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ ⋯ a s 1 x 1 + a s 2 x 2 + ⋯ + a s n x n = 0 \left\{\begin{array}{c}a_{11} x_{1}+a_{12} x_{2}+\cdots+a_{1 n} x_{n}=0 \\ a_{21} x_{1}+a_{22} x_{2}+\cdots+a_{2 n} x_{n}=0 \\ \cdots \cdots \cdots \cdots \cdots \cdots \cdots \cdots \\ a_{s 1} x_{1}+a_{s 2} x_{2}+\cdots+a_{s n} x_{n}=0\end{array}\right. ⎩⎪⎪⎨⎪⎪⎧a11x1+a12x2+⋯+a1nxn=0a21x1+a22x2+⋯+a2nxn=0⋯⋯⋯⋯⋯⋯⋯⋯as1x1+as2x2+⋯+asnxn=0,其全部解向量构成的集合V成为方程组的解空间。
15. 解空间的维度和基(继承7,8)
解空间 V V V是 n n n维向量空间 R n R^{n} Rn的一个子空间,解空间 V V V 中线性无关向量组所含向量最大个数 r r r 称为 V \boldsymbol{V} V 的维数, 记做 dim V = n − R ( A ) \operatorname{dim} \boldsymbol{V}=n-R(A) dimV=n−R(A)。PS:也是基础解系中解向量的个数
d i m V + R ( A ) = n (1) dimV+R(A)=n\tag{1} dimV+R(A)=n(1)
16. 由向量组张成的子空间
L ( x 1 , x 2 , ⋯ , x n ) = { k 1 x 1 + ⋯ + k n x n } L\left(\boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{n}\right)=\left\{k_{1} \boldsymbol{x}_{1}+\cdots+k_{n} \boldsymbol{x}_{n}\right\} L(x1,x2,⋯,xn)={k1x1+⋯+knxn},向量组张成空间即该向量组所有线性组合的集合。
如果 x 1 , x 2 , ⋯ , x m m ≤ n \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{m} \quad m \leq n x1,x2,⋯,xmm≤n 是最大线性无关组, 则 x 1 , x 2 , ⋯ , x m \boldsymbol{x}_{1}, \boldsymbol{x}_{2}, \cdots, \boldsymbol{x}_{m} x1,x2,⋯,xm 是生成的子空间的基.
17. 扩基定理
设 m m m 维子空间 V 1 \mathrm{V}_{1} V1 为 n n n 维线性空间 V \mathrm{V} V 的一个子空间
x 1 , x 2 , ⋯ , x m x_{1}, x_{2}, \cdots, x_{m} x1,x2,⋯,xm 为 V 1 \mathrm{V}_{1} V1 的一组基
则这组向量必定可扩充为 V V V 的一组基. 即在 V V V 中必定可找到 n − m n-m n−m 个向量 x m + 1 , x m + 2 , ⋯ , x n x_{m+1}, x_{m+2}, \cdots, x_{n} xm+1,xm+2,⋯,xn, 使 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 为 V \mathrm{V} V 的一组基.
18. 矩阵的值域(继承16)
设 A ∈ C m × n \mathbf{A} \in \mathbf{C}^{m \times n} A∈Cm×n 的 n \mathbf{n} n 个列向量为 a 1 , a 2 , ⋯ , a n \boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n} a1,a2,⋯,an 则
R ( A ) = L ( a 1 , a 2 , ⋯ , a n ) = { y ∣ y = A x , x ∈ C n } \boldsymbol{R}(\mathbf{A})=L\left(\boldsymbol{a}_{1}, \boldsymbol{a}_{2}, \cdots, \boldsymbol{a}_{n}\right)=\left\{y \mid y=\mathbf{A} \boldsymbol{x}, \boldsymbol{x} \in \mathbf{C}^{n}\right\} R(A)=L(a1,a2,⋯,an)={y∣y=Ax,x∈Cn}是 C m \mathbf{C}^{m} Cm 的子空间, 称为矩阵 A \mathbf{A} A 的值域, 或列空间.r a n k A = d i m R ( A ) rankA=dimR(A) rankA=dimR(A)
19. 矩阵的核空间\零空间、零度
矩阵A的零空间: N ( A ) = { x ∣ A x = 0 , x ∈ C n } N(\mathbf{A})=\left\{\boldsymbol{x} \mid \mathbf{A} \boldsymbol{x}=0, \boldsymbol{x} \in \mathbf{C}^{n}\right\} N(A)={x∣Ax=0,x∈Cn}
矩阵A的零度: n ( A ) = d i m N ( A ) n(A)=dimN(A) n(A)=dimN(A), 本质是解空间的维度
r a n k A + n ( A ) = n (2) rankA+n(A)=n\tag{2} rankA+n(A)=n(2)
20. 多个线性空间的交空间、和空间
交空间:
定理:
设 V 1 、 V 2 \mathrm{V}_{1} 、 \mathrm{~V}_{2} V1、 V2 为线性空间 V \mathrm{V} V 的子空间, 则集合 V 1 ∩ V 2 = { a ∣ a ∈ V 1 且 a ∈ V 2 } V_{1} \cap V_{2}=\left\{a \mid a \in V_{1} \text { 且 } a \in V_{2}\right\} V1∩V2={a∣a∈V1 且 a∈V2}也为 V V V 的子空间, 称之为 V 1 V_{1} V1 与 V 2 V_{2} V2 的交空间.
性质:
V 1 ∩ V 2 = V 2 ∩ V 1 V_{1} \cap V_{2}=V_{2} \cap V_{1} V1∩V2=V2∩V1
( V 1 ∩ V 2 ) ∩ V 3 = V 1 ∩ ( V 2 ∩ V 3 ) \left(V_{1} \cap V_{2}\right) \cap V_{3}=V_{1} \cap\left(V_{2} \cap V_{3}\right) (V1∩V2)∩V3=V1∩(V2∩V3)和空间:
定理:
设 V 1 、 V 2 V_{1} 、 V_{2} V1、V2 为线性空间 V V V 的子空间, 则集合 V 1 + V 2 = { x 1 + x 2 ∣ x 1 ∈ V 1 , x 2 ∈ V 2 } V_{1}+V_{2}=\left\{x_{1}+x_{2} \mid x_{1} \in V_{1}, x_{2} \in V_{2}\right\} V1+V2={x1+x2∣x1∈V1,x2∈V2}也为 V V V 的子空间, 称之为 V 1 V_{1} V1 与 V 2 V_{2} V2 的和空间.
性质:
V 1 + V 2 = V 2 + V 1 V_{1}+V_{2}=V_{2}+V_{1} V1+V2=V2+V1
( V 1 + V 2 ) + V 3 = V 1 + ( V 2 + V 3 ) \left(V_{1}+V_{2}\right)+V_{3}=V_{1}+\left(V_{2}+V_{3}\right) (V1+V2)+V3=V1+(V2+V3)
子空间的并集 V 1 ∪ V 2 V_{1} \cup V_{2} V1∪V2未必为 V V V的子空间,因为运算不一定封闭。
21. 子空间的交空间、和空间相关性质
设 V 1 , V 2 , W V_{1}, V_{2}, W V1,V2,W 为线性空间 V V V 的子空
- 若 W ⊆ V 1 , W ⊆ V 2 W \subseteq V_{1}, W \subseteq V_{2} W⊆V1,W⊆V2, 则 W ⊆ V 1 ∩ V 2 W \subseteq V_{1} \cap V_{2} W⊆V1∩V2.
- 若 V 1 ⊆ W , V 2 ⊆ W V_{1} \subseteq W, V_{2} \subseteq W V1⊆W,V2⊆W, 则 V 1 + V 2 ⊆ W V_{1}+V_{2} \subseteq W V1+V2⊆W.
设 V 1 , V 2 V_{1}, V_{2} V1,V2 为线性空间 V V V 的子空间,则以下三个条件等价:
- V 1 ⊆ V 2 V_{1} \subseteq V_{2} V1⊆V2
- V 1 ∩ V 2 = V 1 V_{1} \cap V_{2}=V_{1} V1∩V2=V1
- V 1 + V 2 = V 2 V_{1}+V_{2}=V_{2} V1+V2=V2
22. 维度公式
dim V 1 + dim V 2 = dim ( V 1 + V 2 ) + dim ( V 1 ∩ V 2 ) \operatorname{dim} V_{1}+\operatorname{dim} V_{2}=\operatorname{dim}\left(V_{1}+V_{2}\right)+\operatorname{dim}\left(V_{1} \cap V_{2}\right) dimV1+dimV2=dim(V1+V2)+dim(V1∩V2)
推论: 设 V 1 , V 2 V_{1}, V_{2} V1,V2 为 n n n 维线性空间 V V V 的两个子空间, 若 dim V 1 + dim V 2 > n \operatorname{dim} V_{1}+\operatorname{dim} V_{2}>n dimV1+dimV2>n, 则 V 1 , V 2 V_{1}, V_{2} V1,V2 必含非零的公共向量. 即 V 1 ∩ V V_{1} \cap V V1∩V,中必含有非零向量.
23. 直和
定义:
设 V 1 , V 2 V_{1}, V_{2} V1,V2 为线性空间 V V V 的两个子空间, 若和空间 V 1 + V 2 V_{1}+V_{2} V1+V2 中每个向量 x x x 的分解式 x = x 1 + x 2 , x 1 ∈ V 1 , x 2 ∈ V 2 x=x_{1}+x_{2}, x_{1} \in V_{1}, x_{2} \in V_{2} x=x1+x2,x1∈V1,x2∈V2唯一, 和 V 1 + V 2 V_{1}+V_{2} V1+V2 就称为直和, 记作 V 1 ⊕ V 2 V_{1} \oplus V_{2} V1⊕V2.
推论:
dim ( V 1 + V 2 ) = dim V 1 + dim V 2 ⇔ dim ( V 1 ∩ V 2 ) = 0 ⇔ V 1 ∩ V 2 = { 0 } ⇔ V 1 + V 2 是直和. \begin{aligned} & \operatorname{dim}\left(V_{1}+V_{2}\right)=\operatorname{dim} V_{1}+\operatorname{dim} V_{2} \\ \Leftrightarrow & \operatorname{dim}\left(V_{1} \cap V_{2}\right)=0 \\ \Leftrightarrow & V_{1} \cap V_{2}=\{0\} \\ \Leftrightarrow & V_{1}+V_{2} \text { 是直和. } \end{aligned} ⇔⇔⇔dim(V1+V2)=dimV1+dimV2dim(V1∩V2)=0V1∩V2={0}V1+V2 是直和.
扩展定义:
V 1 , V 2 , ⋯ , V s V_{1}, V_{2}, \cdots, V_{s} V1,V2,⋯,Vs 都是线性空间 V V V 的子空间, 若和 ∑ i = 1 s V i = V 1 + V 2 + ⋯ + V s \sum_{i=1}^{s} V_{i}=V_{1}+V_{2}+\cdots+V_{s} ∑i=1sVi=V1+V2+⋯+Vs 中每个向量 x x x 的分解式 x = x 1 + x 2 + ⋯ + x s , x i ∈ V i , i = 1 , 2 , … , s x=x_{1}+x_{2}+\cdots+x_{s}, x_{i} \in V_{i}, i=1,2, \ldots, s x=x1+x2+⋯+xs,xi∈Vi,i=1,2,…,s是唯一的, 则和 ∑ i = 1 s V i \sum_{i=1}^{s} V_{i} ∑i=1sVi 就称为直和, 记作 V 1 ⊕ V 2 ⊕ ⋯ ⊕ V s V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s} V1⊕V2⊕⋯⊕Vs
扩展推论: 以下四个条件等价
- W = ∑ i = 1 s V i W=\sum_{i=1}^{s} V_{i} W=∑i=1sVi 是直和
- 零向量分解式唯一, 即
x 1 + x 2 + ⋯ + x s = 0 , x i ∈ V i x_{1}+x_{2}+\cdots+x_{s}=0, x_{i} \in V_{i} x1+x2+⋯+xs=0,xi∈Vi, 必有 x i = 0 , i = 1 , 2 , … , s x_{i}=0, i=1,2, \ldots, s xi=0,i=1,2,…,s- V i ∩ ∑ j ≠ i V j = { 0 } , i = 1 , 2 , ⋯ , s V_{i} \cap \sum_{j \neq i} V_{j}=\{0\}, i=1,2, \cdots, s Vi∩∑j=iVj={0},i=1,2,⋯,s
- dim W = ∑ i = 1 s dim V i \operatorname{dim} W=\sum_{i=1}^{s} \operatorname{dim} V_{i} dimW=∑i=1sdimVi
24. 映射(原象x,象y)
集合到集合的映射: σ : S → S ′ \sigma: S \rightarrow S^{\prime} σ:S→S′
原象到象的映射: σ : a ↦ a ′ \sigma: a \mapsto a^{\prime} σ:a↦a′可以多对一,但不能一对多
25. 映射的性质
- 映射的乘积:
设 σ , τ \sigma, \tau σ,τ 是集合 S S S 到 S 1 S_{1} S1, 集合 S 1 S_{1} S1 到 S 2 S_{2} S2 的映射, 映射的乘积 τ σ \tau \sigma τσ 定义为 ( τ σ ) ( a ) = τ ( σ ( a ) ) , a ∈ S (\tau \sigma)(a)=\tau(\sigma(a)), \quad a \in S (τσ)(a)=τ(σ(a)),a∈S- 设 σ , τ , μ \boldsymbol{\sigma}, \boldsymbol{\tau}, \boldsymbol{\mu} σ,τ,μ 是集合 S S S 到 S 1 , S 1 S_{1}, S_{1} S1,S1 到 S 2 , S 2 S_{2}, S_{2} S2,S2 到 S 3 S_{3} S3 的映射, 则映射的乘积满足结合律, 但不满足交㭥律
( σ τ ) μ = σ ( τ μ ) τ σ ≠ σ τ (\sigma \tau) \mu=\sigma(\tau \mu) \quad \tau \sigma \neq \sigma \tau (στ)μ=σ(τμ)τσ=στ
26. 同态映射、同构映射
设 S , S ′ S, S^{\prime} S,S′ 是两个乘集,即具有一个封闭的满足结合律 的运算*与·的代数系统。 σ \sigma σ 是集合 S S S 到集合 S ′ S^{\prime} S′ 的映射, 并且 ∀ a , b ∈ S , ∃ σ ( a ∗ b ) = σ ( a ) ⋅ σ ( b ) \forall a, b \in S, \exists \sigma(a * b)=\sigma(a) \cdot \sigma(b) ∀a,b∈S,∃σ(a∗b)=σ(a)⋅σ(b)
即 a → σ ( a ) , b → σ ( b ) a \rightarrow \sigma(a), b \rightarrow \sigma(b) a→σ(a),b→σ(b), 就有 a ∗ b → σ ( a ) ⋅ σ ( b ) a * b \rightarrow \sigma(a) \cdot \sigma(b) a∗b→σ(a)⋅σ(b) 就称 σ \sigma σ 是集合 S S S 到集合 S ′ S^{\prime} S′ 的同态映射PS:同态映射即先运算后映射等于先映射后运算的映射
同构映射: 满足一一对应关系的同态映射。
27. 线性变换(针对线性空间)及其性质
T ( k x + l y ) = k ( T x ) + l ( T y ) T(k x+l y)=k(T x)+l(T y) T(kx+ly)=k(Tx)+l(Ty)
本质是同构映射
性质:
- T T T 为 V V V 的线性变换, 则
T ( 0 ) = 0 , T ( − x ) = − T ( x ) T(0)=0, T(-x)=-T(x) T(0)=0,T(−x)=−T(x)- 线性变换保持线性组合及关系式不变, 即
若 x = k 1 x 1 + k 2 x 2 + ⋯ + k r x r x=k_{1} x_{1}+k_{2} x_{2}+\cdots+k_{r} x_{r} x=k1x1+k2x2+⋯+krxr,
则 T ( x ) = k 1 T ( x 1 ) + k 2 T ( x 2 ) + ⋯ + k r T ( x r ) T(x)=k_{1} T\left(x_{1}\right)+k_{2} T\left(x_{2}\right)+\cdots+k_{r} T\left(x_{r}\right) T(x)=k1T(x1)+k2T(x2)+⋯+krT(xr).
28. 线性变换的和
定义:
设 T 1 , T 2 T_{1}, T_{2} T1,T2 为线性空间 V \mathrm{V} V 的两个线性变换, 定义它们的和 T 1 + T 2 T_{1}+T_{2} T1+T2 为: ( T 1 + T 2 ) ( x ) = T 1 x + T 2 x , ∀ x ∈ V \left(T_{1}+T_{2}\right)(x)=T_{1} x+T_{2} x, \forall x \in V (T1+T2)(x)=T1x+T2x,∀x∈V
则 T 1 + T 2 T_{1}+T_{2} T1+T2 也是 V V V 的线性变换.
基本性质:
- 满足交换律: T 1 + T 2 = T 2 + T 1 T_{1}+T_{2}=T_{2}+T_{1} T1+T2=T2+T1
- 满足结合律: ( T 1 + T 2 ) + T 3 = T 1 + ( T 2 + T 3 ) \left(T_{1}+T_{2}\right)+T_{3}=T_{1}+\left(T_{2}+T_{3}\right) (T1+T2)+T3=T1+(T2+T3)
- T 0 + T 1 = T 1 , T 0 T_{0}+T_{1}=T_{1}, T_{0} T0+T1=T1,T0 为零变换.
- ( − T ) + T = T 0 (-T)+T=T_{0} (−T)+T=T0
- 满足数乘交换:
( k T ) ( x ) = k T ( x ) , ∀ x ∈ V (k T)(x)=k T(x), \quad \forall x \in V (kT)(x)=kT(x),∀x∈V
k ( T 1 + T 2 ) = k T 1 + k T 2 k\left(T_{1}+T_{2}\right)=k T_{1}+k T_{2} k(T1+T2)=kT1+kT2
( k + l ) T = k T + l T (k+l) T=k T+l T (k+l)T=kT+lT
( k l ) T = k ( l T ) (k l) T=k(l T) (kl)T=k(lT)
1 T = T 1 T=T 1T=T
29. 线性变换的乘积
定义:
设 T 1 , T 2 T_{1}, T_{2} T1,T2 为线性空间 V V V 的两个线性变换,定义它们的乘积 T 1 T 2 T_{1} T_{2} T1T2 为: ( T 1 T 2 ) ( x ) = T 1 ( T 2 x ) , ∀ x ∈ V \left(T_{1} T_{2}\right)(x)=T_{1}\left(T_{2} x\right), \forall x \in V (T1T2)(x)=T1(T2x),∀x∈V 则 T 1 T 2 T_{1} T_{2} T1T2 也是 V V V 的线性变换.
性质:
- 满足结合律: ( T 1 T 2 ) T 3 = T 1 ( T 2 T 3 ) \left(T_{1} T_{2}\right) T_{3}=T_{1}\left(T_{2} T_{3}\right) (T1T2)T3=T1(T2T3)
- T e T = T T e = T , T e T_{e} T=T T_{e}=T, T_{e} TeT=TTe=T,Te 为单位变换
- 交换律一般不成立, 即一般地,
T 1 T 2 ≠ T 2 T 1 T_{1} T_{2} \neq T_{2} T_{1} T1T2=T2T1- 乘法对加法满足左、右分配律:
T 1 ( T 2 + T 3 ) = T 1 T 2 + T 1 T 3 ( T 1 + T 2 ) T 3 = T 1 T 3 + T 2 T 3 \begin{aligned} &T_{1}\left(T_{2}+T_{3}\right)=T_{1} T_{2}+T_{1} T_{3} \\ &\left(T_{1}+T_{2}\right) T_{3}=T_{1} T_{3}+T_{2} T_{3} \end{aligned} T1(T2+T3)=T1T2+T1T3(T1+T2)T3=T1T3+T2T3
30. 线性变换的逆
定义: T − 1 T = T − 1 = T e T^{-1} T=T ^{-1} =T_{e} T−1T=T−1=Te
基本性质:
- 可逆变换 T T T 的逆变换 T − 1 T^{-1} T−1 也是 V V V 的线性变换
- 线性变换 T T T 可逆 ⇔ \Leftrightarrow ⇔ 线性变换 T T T 是一一对应
- 设 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 是线性空间 V \mathrm{V} V 的一组基, T T T 为 V \mathrm{V} V 的 线性变换, 则 T T T 可逆当且仅当 T ( x 1 ) , T ( x 2 ) , ⋯ , T ( x n ) T\left(x_{1}\right), T\left(x_{2}\right), \cdots, T\left(x_{n}\right) T(x1),T(x2),⋯,T(xn) 线性无关.
- 可逆线性变换把线性无关的向量组变成线性无关的向量组.
31. 线性变换的多项式 (C3 end)
- n次幂: T n = T ⋯ T ⏟ n T^{n}=\underbrace{T \cdots T}_{n} Tn=n T⋯T
T m + n = T m T n , ( T m ) n = T m n , m , n ≥ 0 T^{m+n}=T^{m} T^{n},\left(T^{m}\right)^{n}=T^{m n}, \quad m, n \geq 0 Tm+n=TmTn,(Tm)n=Tmn,m,n≥0
T − n = ( T − 1 ) n T^{-n}=\left(T^{-1}\right)^{n} T−n=(T−1)n
一般地, ( T S ) n ≠ T n S n (T S)^{n} \neq T^{n} S^{n} (TS)n=TnSn
- 多项式: f ( T ) = a m T m + ⋯ + a 1 T + a 0 T e f(T)=a_{m} T^{m}+\cdots+a_{1} T+a_{0} T_{e} f(T)=amTm+⋯+a1T+a0Te
线性变换的多项式满足加法和乘法交换律:
f ( T ) + g ( T ) = g ( T ) + f ( T ) f(T)+g(T)=g(T)+f(T) f(T)+g(T)=g(T)+f(T)
f ( T ) g ( T ) = g ( T ) f ( T ) f(T) g(T)=g(T) f(T) f(T)g(T)=g(T)f(T)
32. 线性变化的矩阵表示
x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 为数域 K K K 上线性空间 V \mathrm{V} V 的一组基
T \mathrm{T} T 为 V V V 的线性变换基向量的象可以被基线性表出,设
{ T ( x 1 ) = a 11 x 1 + a 21 x 2 + ⋯ + a n 1 x n T ( x 2 ) = a 12 x 1 + a 22 x 2 + ⋯ + a n 2 x n T ( x n ) = a 1 n x 1 + a 2 n x 2 + ⋯ + a n n x n \left\{\begin{array}{l} T\left(x_{1}\right)=a_{11} x_{1}+a_{21} x_{2}+\cdots+a_{n 1} x_{n} \\ T\left(x_{2}\right)=a_{12} x_{1}+a_{22} x_{2}+\cdots+a_{n 2} x_{n} \\ T\left(x_{n}\right)=a_{1 n} x_{1}+a_{2 n} x_{2}+\cdots+a_{n n} x_{n} \end{array}\right. ⎩⎨⎧T(x1)=a11x1+a21x2+⋯+an1xnT(x2)=a12x1+a22x2+⋯+an2xnT(xn)=a1nx1+a2nx2+⋯+annxn
用矩阵表示即为
T ( x 1 , x 2 , ⋯ , x n ) = ( T x 1 , T x 2 , ⋯ , T x n ) = ( x 1 , x 2 , ⋯ , x n ) A T\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(T x_{1}, T x_{2}, \cdots, T x_{n}\right)=\left(x_{1}, x_{2}, \cdots, x_{n}\right) A T(x1,x2,⋯,xn)=(Tx1,Tx2,⋯,Txn)=(x1,x2,⋯,xn)A其中 A = ( a 11 a 12 ⋯ a 1 n a 21 a 22 ⋯ a 2 n ⋯ ⋯ ⋯ ⋯ a n 1 a n 2 ⋯ a n n ) A=\left(\begin{array}{cccc}a_{11} & a_{12} & \cdots & a_{1 n} \\ a_{21} & a_{22} & \cdots & a_{2 n} \\ \cdots & \cdots & \cdots & \cdots \\ a_{n 1} & a_{n 2} & \cdots & a_{n n}\end{array}\right) A=⎝⎜⎜⎛a11a21⋯an1a12a22⋯an2⋯⋯⋯⋯a1na2n⋯ann⎠⎟⎟⎞称为线性变换T在基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn下的矩阵。注:
- 给定 V n V^{n} Vn 的基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 和线性变换 T T T, 矩阵 A A A 是唯一的.
- 单位变换在任意一组基下的矩阵皆为单位矩阵
零变换在任意一组基下的矩阵皆为零矩阵
数乘变换在任意一组基下的矩阵皆为数量矩阵;
33. 线性变换的值域、核
线性变换T的值域: R ( T ) = { y ∣ y = T x , x ∈ V } \quad R(T)=\{y \mid y=T x, x \in V\} R(T)={y∣y=Tx,x∈V}
映射的值域
线性变换T的核: N ( T ) = { x ∣ T x = 0 , x ∈ V } \quad N(T)=\{x \mid T x=0, x \in V\} N(T)={x∣Tx=0,x∈V}
齐次线性方程的零解空间
性质:
线性空间 V V V 的线性变换 T T T 的值域和核都是 V V V 的 线性子空间
34. 线性变换的秩与亏
线性变换 T \mathrm{T} T 的值域 R ( T ) R(T) R(T) 的维数称为 T \mathrm{T} T 的秩
T \mathrm{T} T 的核 N ( T ) N(T) N(T) 的维数称为 T \mathrm{T} T 的亏 (零度)
dim R ( T ) + dim N ( T ) = n (3) \operatorname{dim} R(T)+\operatorname{dim} N(T)=n\tag{3} dimR(T)+dimN(T)=n(3)
35. T与A与基象组的关系
- T T T 的值域 R ( T ) R(T) R(T) 是由基象组生成的子空间, 即
R ( T ) = L ( T ( x 1 ) , T ( x 2 ) , ⋯ , T ( x n ) ) R(T)=L\left(T\left(x_{1}\right), T\left(x_{2}\right), \cdots, T\left(x_{n}\right)\right) R(T)=L(T(x1),T(x2),⋯,T(xn))- T T T 的秩 = A =\mathrm{A} =A 的秩. 即 d i m R ( T ) = r a n k A dimR(T) = rankA dimR(T)=rankA
- 定理: (概括为T和A的运算等价)
设 x 1 , x 2 , ⋯ , x r x_{1}, x_{2}, \cdots, x_{r} x1,x2,⋯,xr 为数域 K K K 上线性空间 V V V 的一组 基, 在这组基下, V V V 的每一个线性变换都与 K n × n K^{n \times n} Kn×n 中 的唯一一个矩阵对应, 且具有以下性质:
(1) 线性变换的和对应于矩阵的和;
(2) 线性变换的数量乘积对应于矩阵的数量乘积;
(3) 线性变换的乘积对应于矩阵的乘积;
(4) 可逆线性变换与可逆矩阵对应, 且逆变换对应 于逆矩阵.
(5) 多项式也对应: f ( t ) = a m t m + a m − 1 t m − 1 + ⋯ + a 1 t + a 0 , t ∈ K \quad f(t)=a_{m} t^{m}+a_{m-1} t^{m-1}+\cdots+a_{1} t+a_{0}, t \in K f(t)=amtm+am−1tm−1+⋯+a1t+a0,t∈K T \mathrm{T} T 为线性空间 , V \mathrm{V} V 的线性变换, 且对 V \mathrm{V} V 的基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 有 T ( x 1 , x 2 , ⋯ , x n ) = ( x 1 , x 2 , ⋯ , x n ) A T\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(x_{1}, x_{2}, \cdots, x_{n}\right) A T(x1,x2,⋯,xn)=(x1,x2,⋯,xn)A
则 V V V 的线性变换 f ( T ) f(T) f(T) 在基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 下的矩阵是 f ( A ) = a m A m + a m − 1 A m − 1 + ⋯ + a 1 A + a 0 E f(A)=a_{m} A^{m}+a_{m-1} A^{m-1}+\cdots+a_{1} A+a_{0} E f(A)=amAm+am−1Am−1+⋯+a1A+a0E
36. 坐标变换(向量在线性变换下的坐标变换)
(注意和11做一下对比)
定理: (概括为象坐标=对应矩阵对原象坐标的变换)
设线性变换 T T T 在基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 下的矩阵为 A \mathrm{A} A
x ∈ V x \in V x∈V 在基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 下的坐标为 ( ξ 1 , ξ 2 , ⋯ , ξ n ) T \left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)^{T} (ξ1,ξ2,⋯,ξn)T
T ( x ) T(x) T(x) 在基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 下的坐标为 ( η 1 , η 2 , ⋯ , η n ) T \left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right)^{T} (η1,η2,⋯,ηn)T, 则有
( η 1 η 2 ⋮ η n ) = A ( ξ 1 ξ 2 ⋮ ξ n ) \left(\begin{array}{c} \eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{n} \end{array}\right)=A\left(\begin{array}{c} \xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n} \end{array}\right) ⎝⎜⎜⎜⎛η1η2⋮ηn⎠⎟⎟⎟⎞=A⎝⎜⎜⎜⎛ξ1ξ2⋮ξn⎠⎟⎟⎟⎞
37. 线性变换的对应矩阵A和基变换过渡矩阵C的关系
概括为(象组的对应矩阵)= 过渡矩阵对(原象组的对应矩阵)做相似变换
定理: 设线性空间 V V V 的线性变换 T T T 在两组基
x 1 , x 2 , ⋯ , x n y 1 , y 2 , ⋯ , y n \begin{aligned} &x_{1}, x_{2}, \cdots, x_{n} \\ &y_{1}, y_{2}, \cdots, y_{n} \end{aligned} x1,x2,⋯,xny1,y2,⋯,yn下的矩阵分别为 A 、 B A 、 B A、B, 且从基(I) 到基(II)的过渡 矩阵是 C C C, 则
B = C − 1 A C B=C^{-1} A C B=C−1AC
38. 线性变换的特征值与特征向量(由基定义,但与基无关)
定义:
设 T T T 是数域 K \mathrm{K} K 上线性空间 V \mathrm{V} V 的一个线性变换, 若对于 K K K 中的一个数 λ 0 \lambda_{0} λ0, 存在一个 V V V 的非零向量 x x x, 使得
T x = λ 0 x T\mathbf{x}=\lambda_{0} \mathbf{x} Tx=λ0x则称 λ 0 \lambda_{0} λ0 为 T T T 的一个特征值, 称 x x x 为 T T T 的属于特征值 λ 0 \lambda_{0} λ0 的特征向量.对比矩阵的特征值和特征矩阵:
假设 A A A是方阵(基调:就是特征值和特征方程只试用于方阵),对于一个数 λ \lambda λ,存在非零列向量 α \alpha α,使得 A α = λ α A α = λ α Aα=λα ,则称 λ \lambda λ为方阵的特征值, α \alpha α称为对应于 λ \lambda λ的特征向量
39. 线性变换与矩阵的特征值与特征向量的关系
已知:
- dim V = n \operatorname{dim} V=n dimV=n
- x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 是 V V V 的一组基
- T ( x 1 , x 2 , ⋯ , x n ) = ( x 1 , x 2 , ⋯ , x n ) A T\left(x_{1}, x_{2}, \cdots, x_{n}\right)=\left(x_{1}, x_{2}, \cdots, x_{n}\right) A T(x1,x2,⋯,xn)=(x1,x2,⋯,xn)A
- T x = λ 0 x T\mathbf{x}=\lambda_{0} \mathbf{x} Tx=λ0x
- x \mathbf{x} x在基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn下的坐标为 ( ξ 1 ⋮ ξ n ) \left(\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{n}\end{array}\right) ⎝⎜⎛ξ1⋮ξn⎠⎟⎞
⇒ T ( x ) \Rightarrow T(x) ⇒T(x) 在基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 下的坐标为 A ( ξ 1 ⋮ ξ n ) A\left(\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{n}\end{array}\right) A⎝⎜⎛ξ1⋮ξn⎠⎟⎞
\quad 而 λ 0 x \lambda_{0} x λ0x 的坐标是 λ 0 ( ξ 1 ⋮ ξ n ) \lambda_{0}\left(\begin{array}{c}\xi_{1} \\ \vdots \\ \xi_{n}\end{array}\right) λ0⎝⎜⎛ξ1⋮ξn⎠⎟⎞
⇒ A ( ξ 1 ⋮ ξ n ) = λ 0 ( ξ 1 ⋮ ξ n ) \Rightarrow A\left(\begin{array}{c} \xi_{1} \\ \vdots \\ \xi_{n} \end{array}\right)=\lambda_{0}\left(\begin{array}{c} \xi_{1} \\ \vdots \\ \xi_{n} \end{array}\right) ⇒A⎝⎜⎛ξ1⋮ξn⎠⎟⎞=λ0⎝⎜⎛ξ1⋮ξn⎠⎟⎞综上:
- 若 λ 0 \lambda_{0} λ0 是 T T T 的特征值, 则 ∣ λ 0 I − A ∣ = 0 \left|\lambda_{0} I-A\right|=0 ∣λ0I−A∣=0.
- 若 ( ξ 1 , ξ 2 , ⋯ , ξ n ) T \left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right)^{T} (ξ1,ξ2,⋯,ξn)T 是 ( λ a I − A ) X = 0 \left(\lambda_{\mathrm{a}} I-A\right) X=0 (λaI−A)X=0 一个非零解, 则向量 x = ξ 1 x 1 + ⋯ + ξ n x n x=\xi_{1} x_{1}+\cdots+\xi_{n} x_{n} x=ξ1x1+⋯+ξnxn 就是 T T T 的属于 λ 0 \lambda_{0} λ0 的一个 特征向量.
- 求T的特征值就是求 ∣ λ 0 I − A ∣ = 0 \left|\lambda_{0} I-A\right|=0 ∣λ0I−A∣=0,求其特征向量就是在矩阵特征向量内积上基象组。
40. 线性变换T的特征子空间
定义:
T T T 为 n n n 维线性空间 V \mathrm{V} V 的线性变换
λ 0 \lambda_{0} λ0 为 T T T 的一个特征值
令 V λ 0 V_{\lambda_{0}} Vλ0 为 V λ 0 = { x ∣ T x = λ 0 x } V_{\lambda_{0}}=\left\{x \mid T x=\lambda_{0} x\right\} Vλ0={x∣Tx=λ0x},特征+零向量
则 V λ 0 V_{\lambda_{0}} Vλ0是 V V V 的一个子空间. 称之为 T T T 的一个特征子空间
性质:
特征子空间 V λ 0 V_{\lambda_{0}} Vλ0 的维数等于齐次线性方程组 ( λ 0 I − A ) X = 0 \left(\lambda_{0} I-A\right) X=0 (λ0I−A)X=0的解空间的维数, 且由方程组得到的属于 λ 0 \lambda_{0} λ0 的 全部线性无关的特征向量就是 V λ 0 V_{\lambda_{0}} Vλ0 的一组基.
41. 特征多项式 ∣ λ I − A ∣ |\lambda I-A| ∣λI−A∣的有关性质
t r A = a 11 + a 22 + ⋯ + a n n trA = a_{11}+a_{22}+\cdots+a_{n n} trA=a11+a22+⋯+ann
tr ( A B ) = tr ( B A ) \operatorname{tr}(A B)=\operatorname{tr}(B A) tr(AB)=tr(BA)
∑ λ i = ∣ A ∣ \sum \lambda_{i} = |A| ∑λi=∣A∣
42. 相似矩阵的性质(任意 n n n 阶矩阵 A A A 与三角矩阵相似)
P − 1 A P = [ λ 1 ∗ … ∗ λ 2 ⋱ ⋮ ⋱ ∗ λ n ] P^{-1} A P=\left[\begin{array}{cccc} \lambda_{1} & * & \ldots & * \\ & \lambda_{2} & \ddots & \vdots \\ & & \ddots & * \\ & & & \lambda_{n} \end{array}\right] P−1AP=⎣⎢⎢⎢⎡λ1∗λ2…⋱⋱∗⋮∗λn⎦⎥⎥⎥⎤
- 相似矩阵有相似的迹
- 相似矩阵具有相同的特征多项式
- 有相同特征多项式的矩阵末必相似
- 相似矩阵具有相同的最小多项式
43. Hamilton-Caylay定理(特征矩阵A是其特征多项式的零点)
设 A ∈ K n × n A \in K^{n \times n} A∈Kn×n 其特征多项式:
φ ( λ ) = ∣ λ I − A ∣ = λ n + a 1 λ n − 1 + ⋯ + a n − 1 λ + a n \varphi(\lambda)=|\lambda I-A|=\lambda^{n}+a_{1} \lambda^{n-1}+\cdots+a_{n-1} \lambda+a_{n} φ(λ)=∣λI−A∣=λn+a1λn−1+⋯+an−1λ+an则 φ ( A ) = A n + a 1 A n − 1 + ⋯ + a n − 1 A + a n I = 0 \varphi(A)=A^{n}+a_{1} A^{n-1}+\cdots+a_{n-1} A+a_{n} I=0 φ(A)=An+a1An−1+⋯+an−1A+anI=0.
44. 矩阵的最小多项式
PS:对比50, 辅助参考文献
特征多项式
φ
(
λ
)
=
∣
λ
I
−
A
∣
\varphi(\lambda)=|\lambda I-A|
φ(λ)=∣λI−A∣以
A
A
A为根
最小多项式:
- 描述 以矩阵A为根的多项式的中 次数最低的那个与 A \mathbf{A} A 的对角化之间的关系.
- 定义:
设 A ∈ K n × n A \in K^{n \times n} A∈Kn×n, 在数域K上的以 A \mathrm{A} A 为根的多项式中, 次数最低的首项系数为 1 的那个多项式, 称为A的最小多项式,常记做 m ( λ ) m(\lambda) m(λ)
- 性质:
矩阵 A \mathrm{A} A 的最小多项式 m ( λ ) m(\lambda) m(λ) 可以整除以 A \mathrm{A} A 为根的任意首 1 多项式 f ( λ ) f(\lambda) f(λ), 且 m ( λ ) m(\lambda) m(λ) 是唯一的.
可以整除 ⇔ f ( λ ) = m ( λ ) q ( λ ) \quad \Leftrightarrow \quad f(\lambda)=m(\lambda) q(\lambda) ⇔f(λ)=m(λ)q(λ)
定理:
矩阵 A A A 的最小多项式 m ( λ ) m(\lambda) m(λ) 与其特征多项式 φ ( λ ) \varphi(\lambda) φ(λ) 的零点相同 (不计重数)φ ( λ ) = m ( λ ) q ( λ ) φ(\lambda)=m(\lambda) q(\lambda) φ(λ)=m(λ)q(λ)
A x = λ 0 x ( x ≠ 0 ) ⇒ m ( A ) x = m ( λ 0 ) x = 0 A x=\lambda_{0} x(x \neq 0) \Rightarrow m(A) x=m\left(\lambda_{0}\right) x=0 Ax=λ0x(x=0)⇒m(A)x=m(λ0)x=0所以:
推论: m ( λ ) m(\lambda) m(λ) 一定含 φ ( λ ) \varphi(\lambda) φ(λ) 的全部单因式
但: m ( λ ) m(\lambda) m(λ) 不一定是 φ ( λ ) \varphi(\lambda) φ(λ) 的全部单因式的乘积
- 怎么求
定理:设n阶矩阵A特征多项式 φ ( λ ) \varphi(\lambda) φ(λ), 特征矩阵的 λ I − A \lambda I-A λI−A 的全体 n − 1 n-1 n−1 阶子式的最大公因式为 d ( λ ) d(\lambda) d(λ), 则 A A A 最小多项式为
m ( λ ) = det ( λ I − A ) d ( λ ) m(\lambda)=\frac{\operatorname{det}(\lambda I-A)}{d(\lambda)} m(λ)=d(λ)det(λI−A)
45. 可对角化
定义 1 : 1: 1: 设 T T T 是 n n n 维线性空间 V V V 的一个线性变换, 如果存在 V V V 的一组基, 使 T T T 在这组基下的矩阵为对角矩阵, 则称线性变换 T T T 可对角化.
条件: T T T 可对角化 ⇔ T \Leftrightarrow T ⇔T 有 n n n 个线性无关的特征向量
定义 2 : 2: 2: 矩阵 A \mathrm{A} A 是数域 K K K 上的一个 n n n 阶方阵. 如果 存在一个 K K K 上的 n n n 阶可逆矩阵 P P P, 使 P − 1 A P P^{-1} A P P−1AP 为对角矩阵, 则称矩阵 A \mathrm{A} A 可对角化.
条件:A有 n n n 个线性无关的特征向量, 或 A A A 有完备的特征 向量系
46. 求对角化方法
- 得到特征矩阵A
- 求对应特征值,解齐次线性方程组 ( λ ⋅ I − A ) X = 0 (\lambda \cdot I-A) X=0 (λ⋅I−A)X=0得到特征向量
- 得到基础解系,解空间维度为n则可以对角化,以解向量为列向量组成的方阵对A进行相似变换即可得到对角矩阵
47. 不变子空间
设 T T T 是数域 K \mathrm{K} K 上线性空间 V \mathrm{V} V 的线性变换, V 1 \mathrm{V}_{1} V1 是 V \mathrm{V} V 的 的子空间
若 ∀ x ∈ V 1 \forall x \in V_{1} ∀x∈V1, 有 T ( x ) ∈ V 1 T(x) \in V_{1} T(x)∈V1 则称 V 1 \mathrm{V}_{1} V1 是 T T T 的不变子空间一个空间到自身空间的映射(不一定一一对应)
设 V 1 = L ( x 1 , x 2 , ⋯ x s ) V_{1}=L\left(x_{1}, x_{2}, \cdots x_{s}\right) V1=L(x1,x2,⋯xs), 则:
V 1 \mathrm{V}_{1} V1 是不变子空间 ⇔ T ( x 1 ) , T ( x 2 ) , ⋯ , T ( x s ) ∈ V 1 \Leftrightarrow T\left(x_{1}\right), T\left(x_{2}\right), \cdots, T\left(x_{s}\right) \in V_{1} ⇔T(x1),T(x2),⋯,T(xs)∈V1两个不变子空间的交与和仍是不变子空间
48. 常见不变子空间
-
线性变换 T T T 的值域 R ( T ) R(T) R(T) 与核 N ( T ) N(T) N(T) 都是 T T T 的 不变子空间
-
任何子空间都是数乘变换 K \mathrm{K} K 的不变子空间.
-
线性变换 T T T 的特征子空间 V λ n V_{\lambda_{n}} Vλn 是 T T T 的不变子空间.
∵ ∀ x ∈ V λ o \because \forall x \in V_{\lambda o} ∵∀x∈Vλo, 有 T ( x ) = λ o x ∈ V λ o T(x)=\lambda_{o} x \in V_{\lambda o} T(x)=λox∈Vλo -
由 T T T 的特征向量生成的子空间是 T T T 的不变子空间
49. 连续的线性变换的定理
已知:
- T \mathrm{T} T 是线性空间 V n V^{n} Vn 的线性变换
- V n V^{n} Vn 可分解为 s \mathrm{s} s 个 T \mathrm{T} T 的不变子空间的直和 V n = V 1 ⊕ V 2 ⊕ ⋯ ⊕ V s V^{n}=V_{1} \oplus V_{2} \oplus \cdots \oplus V_{s} Vn=V1⊕V2⊕⋯⊕Vs
- 在每个不变子空间 V i V_{i} Vi 中取基 x i 1 , x i 2 , ⋯ , x i n i ( i = 1 , 2 , ⋯ , s ) x_{i 1}, x_{i 2}, \cdots, x_{i n_{i}}(i=1,2, \cdots, s) xi1,xi2,⋯,xini(i=1,2,⋯,s)将其合并作为 V n V^{n} Vn 的基,
则
- T \mathrm{T} T 在该基下的矩阵为 A = diag ( A 1 , A 2 , ⋯ , A s ) A=\operatorname{diag}\left(A_{1}, A_{2}, \cdots, A_{s}\right) A=diag(A1,A2,⋯,As)其中 A i ( i = 1 , 2 , ⋯ , s ) A_{i}(i=1,2, \cdots, s) Ai(i=1,2,⋯,s) 是 T \mathrm{T} T 在 V i V_{i} Vi 的基 ( ∗ ) (*) (∗) 下的矩阵
- T的全部不同的特征值 λ 1 , λ 2 , ⋯ , λ s \lambda_{1}, \lambda_{2}, \cdots, \lambda_{s} λ1,λ2,⋯,λs,其对应的特征子空间满足:
d i m V λ 1 + d i m V λ 2 + ⋯ + d i m V λ s = n dimV_{\lambda1}+dimV_{\lambda2} +\cdots +dimV_{\lambda s}=n dimVλ1+dimVλ2+⋯+dimVλs=n
50. λ − \lambda- λ−矩阵
PS:对比44
矩阵定义:若矩阵 A \mathrm{A} A 的元素是 λ \lambda λ 的多项式, 称 A \mathrm{A} A 为 λ \lambda λ 一矩阵, 并把 A \mathrm{A} A 写成 A ( λ ) A(\lambda) A(λ).
秩定义: 若 λ − \lambda- λ−矩阵 A ( λ ) A(\lambda) A(λ) 中有一个 r ( r ≥ 1 ) r(r \geq 1) r(r≥1) 级子式 不为零, 而所有 r + 1 r+1 r+1 级的子式 (若有的话) 皆为零, 则称 A ( λ ) A(\lambda) A(λ) 的秩为 r r r.
行列式因子: D k ( λ ) = D_{k}(\lambda)= Dk(λ)= 最大公因式 { A ( λ ) \{A(\lambda) {A(λ) 的所有 k k k 阶子式 } \} }
不变因子: d k ( λ ) = D k ( λ ) D k − 1 ( λ ) ( D 0 ( λ ) = 1 ) d_{k}(\lambda)=\frac{D_{k}(\lambda)}{D_{k-1}(\lambda)}\left(D_{0}(\lambda)=1\right) dk(λ)=Dk−1(λ)Dk(λ)(D0(λ)=1), 先通过穷举的方法得到行列式因子,然后求不变因子
初等因子: d k ( λ ) d_{k}(\lambda) dk(λ) 的不可约因式(不能写成两个次数较低的多项式之乘积的多项式) 对特征多项式做初等变换,最后一项的不可约因式即为A(λ)的初等因子
注 1 : 考虑 λ \lambda λ 一矩阵的特征多项式 λ I − A \lambda \boldsymbol{I}-\boldsymbol{A} λI−A, 可得 A \boldsymbol{A} A 的最小多项式
m ( λ ) = d n ( λ ) = D n ( λ ) D n − 1 ( λ ) m(\lambda)=d_{n}(\lambda)=\frac{D_{n}(\lambda)}{D_{n-1}(\lambda)} m(λ)=dn(λ)=Dn−1(λ)Dn(λ)注 2 : λ 2: \lambda 2:λ 一矩阵 λ I − A \lambda I-A λI−A 的行列式因子(不变因子, 初等因子) 称为 A A A 的行列式因子 (不变因子, 初等因子)
51. Jordan标准形
化矩阵为Jordan标准形,本质是选取线性空间的基,使得数学问题更简单
J为矩阵A的Jordan标准形:
A满足,特征多项式
φ ( λ ) = ( λ − λ 1 ) m 1 ( λ − λ 2 ) m 2 ⋯ ( λ − λ s ) m s \varphi(\lambda)=\left(\lambda-\lambda_{1}\right)^{m_{1}}\left(\lambda-\lambda_{2}\right)^{m_{2}} \cdots\left(\lambda-\lambda_{s}\right)^{m_{s}} φ(λ)=(λ−λ1)m1(λ−λ2)m2⋯(λ−λs)ms
其中 ( m 1 + m 2 + ⋯ + m s = n ) \quad\left(m_{1}+m_{2}+\cdots+m_{s}=n\right) (m1+m2+⋯+ms=n)J满足:
J = [ J 1 ( λ 1 ) J 2 ( λ 2 ) ⋱ J s ( λ s ) ] J=\left[\begin{array}{llll}J_{1}\left(\lambda_{1}\right) & & & \\ & J_{2}\left(\lambda_{2}\right) & & \\ & & \ddots & \\ & & & J_{s}\left(\lambda_{s}\right)\end{array}\right] J=⎣⎢⎢⎡J1(λ1)J2(λ2)⋱Js(λs)⎦⎥⎥⎤,其中 J i ( λ i ) = [ λ i 1 ⋯ 0 0 λ i ⋱ 0 ⋮ ⋮ ⋱ 1 0 0 ⋯ λ i ] J_{i}\left(\lambda_{i}\right)=\left[\begin{array}{cccc}\lambda_{i} & 1 & \cdots & 0 \\ 0 & \lambda_{i} & \ddots & 0 \\ \vdots & \vdots & \ddots & 1 \\ 0 & 0 & \cdots & \lambda_{i}\end{array}\right] Ji(λi)=⎣⎢⎢⎢⎡λi0⋮01λi⋮0⋯⋱⋱⋯001λi⎦⎥⎥⎥⎤,J根据初等因子求。
52. 初等因子
设
φ
(
λ
)
=
∣
λ
I
−
A
∣
\varphi(\lambda)=|\lambda I-A|
φ(λ)=∣λI−A∣ 的一个不可约因式为
(
λ
−
λ
0
)
k
\left(\lambda-\lambda_{0}\right)^{k}
(λ−λ0)k, 则
(
λ
−
λ
0
)
k
\left(\lambda-\lambda_{0}\right)^{k}
(λ−λ0)k 是
A
A
A 的
k
k
k 个初等因子的乘积
⇔
(
λ
0
I
−
A
)
x
=
0
\Leftrightarrow\left(\lambda_{0} I-A\right) x=0
⇔(λ0I−A)x=0 的基础解系含
k
k
k 个解向量
⇔
\Leftrightarrow
⇔ 对应特征值
λ
0
\lambda_{0}
λ0 有
k
k
k 个线性无关的特征向量
⇔
k
=
n
−
rank
(
λ
0
I
−
A
)
\Leftrightarrow k=n-\operatorname{rank}\left(\lambda_{0} I-A\right)
⇔k=n−rank(λ0I−A)
53. 欧式空间
能进行内积运算的特殊线性空间。
若:
x
=
(
a
1
,
a
2
,
⋯
,
a
n
)
,
y
=
(
b
1
,
b
2
,
⋯
,
b
n
)
x=\left(a_{1}, a_{2}, \cdots, a_{n}\right), \quad y=\left(b_{1}, b_{2}, \cdots, b_{n}\right)
x=(a1,a2,⋯,an),y=(b1,b2,⋯,bn)
则内积定义为:
(
x
,
y
)
=
a
1
b
1
+
a
2
b
2
+
⋯
+
a
n
b
n
(x, y)=a_{1} b_{1}+a_{2} b_{2}+\cdots+a_{n} b_{n}
(x,y)=a1b1+a2b2+⋯+anbn
(
x
,
y
)
′
=
a
1
b
1
+
2
a
2
b
2
+
⋯
+
k
a
k
b
k
+
⋯
+
n
a
n
b
n
(x, y)^{\prime}=a_{1} b_{1}+2 a_{2} b_{2}+\cdots+k a_{k} b_{k}+\cdots+n a_{n} b_{n}
(x,y)′=a1b1+2a2b2+⋯+kakbk+⋯+nanbn
若:
A
=
(
a
i
j
)
m
×
n
,
B
=
(
b
i
j
)
m
×
n
A=\left(a_{i j}\right)_{m \times n}, \quad B=\left(b_{i j}\right)_{m \times n}
A=(aij)m×n,B=(bij)m×n
则内积定义为:
(
A
,
B
)
=
∑
i
=
1
m
∑
j
=
1
n
a
i
j
b
i
j
=
tr
(
A
B
T
)
(A, B)=\sum_{i=1}^{m} \sum_{j=1}^{n} a_{i j} b_{i j}=\operatorname{tr}\left(A B^{T}\right)
(A,B)=∑i=1m∑j=1naijbij=tr(ABT)
54. n维欧氏空间中内积的矩阵表示
已知:V中的一组基
x
=
ξ
1
x
1
+
ξ
2
x
2
+
⋯
+
ξ
n
x
n
x=\xi_{1} x_{1}+\xi_{2} x_{2}+\cdots+\xi_{n} x_{n}
x=ξ1x1+ξ2x2+⋯+ξnxn
y
=
η
1
x
1
+
η
2
x
2
+
⋯
+
η
n
x
n
y=\eta_{1} x_{1}+\eta_{2} x_{2}+\cdots+\eta_{n} x_{n}
y=η1x1+η2x2+⋯+ηnxn
则:
(
x
,
y
)
=
(
∑
i
=
1
n
ξ
i
x
i
,
∑
j
=
1
n
η
j
x
j
)
=
∑
i
=
1
n
∑
j
=
1
n
ξ
i
η
j
(
x
i
,
x
j
)
(x, y)=\left(\sum_{i=1}^{n} \xi_{i} x_{i}, \sum_{j=1}^{n} \eta_{j} x_{j}\right)=\sum_{i=1}^{n} \sum_{j=1}^{n} \xi_{i} \eta_{j}\left(x_{i}, x_{j}\right)
(x,y)=(∑i=1nξixi,∑j=1nηjxj)=∑i=1n∑j=1nξiηj(xi,xj)
若:
a
i
j
=
(
x
i
,
x
j
)
,
i
,
j
=
1
,
2
,
⋯
n
,
A
=
(
a
i
j
)
n
×
n
,
X
=
(
ξ
1
ξ
2
⋮
ξ
n
)
,
Y
=
(
η
1
η
2
⋮
η
n
)
a_{i j}=\left(x_{i}, x_{j}\right), \quad i, j=1,2, \cdots n,A=\left(a_{i j}\right)_{n \times n}, \quad X=\left(\begin{array}{c}\xi_{1} \\ \xi_{2} \\ \vdots \\ \xi_{n}\end{array}\right), \quad Y=\left(\begin{array}{c}\eta_{1} \\ \eta_{2} \\ \vdots \\ \eta_{n}\end{array}\right)
aij=(xi,xj),i,j=1,2,⋯n,A=(aij)n×n,X=⎝⎜⎜⎜⎛ξ1ξ2⋮ξn⎠⎟⎟⎟⎞,Y=⎝⎜⎜⎜⎛η1η2⋮ηn⎠⎟⎟⎟⎞
则:
(
x
,
y
)
=
∑
i
=
1
n
∑
j
=
1
n
a
i
j
ξ
i
η
j
=
X
′
A
Y
(x, y)=\sum_{i=1}^{n} \sum_{j=1}^{n} a_{i j} \xi_{i} \eta_{j}=X^{\prime} A Y
(x,y)=∑i=1n∑j=1naijξiηj=X′AY
定义: 矩阵 A = ( ( x 1 , x 1 ) ( x 1 , x 2 ) ⋯ ( x 1 , x n ) ( x 2 , x 1 ) ( x 2 , x 2 ) ⋯ ( x 2 , x n ) ⋯ ⋯ ⋯ ⋯ ( x n , x 1 ) ( x n , x 2 ) ⋯ ( x n , x n ) ) A=\left(\begin{array}{cccc}\left(x_{1}, x_{1}\right) & \left(x_{1}, x_{2}\right) & \cdots & \left(x_{1}, x_{n}\right) \\ \left(x_{2}, x_{1}\right) & \left(x_{2}, x_{2}\right) & \cdots & \left(x_{2}, x_{n}\right) \\ \cdots & \cdots & \cdots & \cdots \\ \left(x_{n}, x_{1}\right) & \left(x_{n}, x_{2}\right) & \cdots & \left(x_{n}, x_{n}\right)\end{array}\right) A=⎝⎜⎜⎛(x1,x1)(x2,x1)⋯(xn,x1)(x1,x2)(x2,x2)⋯(xn,x2)⋯⋯⋯⋯(x1,xn)(x2,xn)⋯(xn,xn)⎠⎟⎟⎞ 称为基 x 1 , x 2 , ⋯ , x n x_{1}, x_{2}, \cdots, x_{n} x1,x2,⋯,xn 的度量矩阵.
A的性质:
- A是实对称矩阵
- A是正定矩阵(内积的正定性)
- 对同一内积而言, 不同基的度量矩阵是合同的.
B = C T A C B=C^{T} A C B=CTAC
55. 柯西-布涅柯夫斯基不等式
对欧氏空间
V
V
V 中任意两个向量
x
、
y
x 、 y
x、y, 有
∣
(
x
,
y
)
∣
≤
∣
x
∣
∣
y
∣
|(x, y)| \leq|x||y|
∣(x,y)∣≤∣x∣∣y∣当且仅当
x
、
y
x 、 y
x、y 线性相关时等号成立.
56. 标准正交基的特征
欧式空间
V
n
V^{n}
Vn 的标准正交基
x
1
,
x
2
,
⋯
,
x
n
x_{1}, x_{2}, \cdots, x_{n}
x1,x2,⋯,xn且
x
=
ξ
1
x
1
+
ξ
2
x
2
+
⋯
+
ξ
n
x
n
,
y
=
η
1
x
1
+
η
2
x
2
+
⋯
+
η
n
x
n
x=\xi_{1} x_{1}+\xi_{2} x_{2}+\cdots+\xi_{n} x_{n}, y=\eta_{1} x_{1}+\eta_{2} x_{2}+\cdots+\eta_{n} x_{n}
x=ξ1x1+ξ2x2+⋯+ξnxn,y=η1x1+η2x2+⋯+ηnxn
(1)基
x
1
,
x
2
,
⋯
,
x
n
x_{1}, x_{2}, \cdots, x_{n}
x1,x2,⋯,xn 的度量矩阵
A
=
I
A=I
A=I
(2)
ξ
i
=
(
x
,
x
i
)
,
η
j
=
(
y
,
x
j
)
\xi_{i}=\left(x, x_{i}\right), \eta_{j}=\left(y, x_{j}\right)
ξi=(x,xi),ηj=(y,xj)
(3)
(
x
,
y
)
=
∑
i
=
1
n
ξ
i
η
i
(x, y)=\sum_{i=1}^{n} \xi_{i} \eta_{i}
(x,y)=∑i=1nξiηi
57. 欧式空间的子空间
欧氏空间 V n V^{n} Vn, 子空间 V 1 V_{1} V1, 则 V 1 ⊥ = { y ∣ y ∈ V , y ⊥ V 1 } V_{1}^{\perp}=\left\{y \mid y \in V, y \perp V_{1}\right\} V1⊥={y∣y∈V,y⊥V1} 是 V n V^{n} Vn 的子空间,称为正交补。
定理: 设欧氏空间 V n V^{n} Vn, 子空间 V 1 V_{1} V1, 则
V n = V 1 ⊕ V 1 ⊥ V^{n}=V_{1} \oplus V_{1}^{\perp} Vn=V1⊕V1⊥定理: 设 A = ( a i j ) m × n ∈ R m × n A=\left(a_{i j}\right)_{m \times n} \in R^{m \times n} A=(aij)m×n∈Rm×n, 则
(1) [ R ( A ) ] ⊥ = N ( A T ) [R(A)]^{\perp}=N\left(A^{T}\right) [R(A)]⊥=N(AT), 且 R ( A ) ⊕ N ( A T ) = R m R(A) \oplus N\left(A^{T}\right)=R^{m} R(A)⊕N(AT)=Rm
(2) [ R ( A T ) ] ⊥ = N ( A ) \left[R\left(A^{T}\right)\right]^{\perp}=N(A) [R(AT)]⊥=N(A), 且 R ( A T ) ⊕ N ( A ) = R n R\left(A^{T}\right) \oplus N(A)=R^{n} R(AT)⊕N(A)=Rn
58. 欧氏空间中的正交变换
定理:设
T
T
T 是欧氏空间
V
V
V 的一个线性变换. 下述命题是等价的:
1)
T
T
T 是正交变换;
2)
T
\boldsymbol{T}
T 保持向量长度不变, 即
∣
T
(
x
)
∣
=
∣
x
∣
,
∀
x
∈
V
;
|T(x)|=|x|, \quad \forall x \in V ;
∣T(x)∣=∣x∣,∀x∈V;
3)
T
T
T 保持向量间的距离不变, 即
d
(
T
(
x
)
,
T
(
y
)
)
=
d
(
x
,
y
)
,
∀
x
,
y
∈
V
d(T(x), T(y))=d(x, y), \quad \forall x, y \in V
d(T(x),T(y))=d(x,y),∀x,y∈V
性质:
若:
x
1
,
x
2
,
⋯
,
x
n
x_{1}, x_{2}, \cdots, x_{n}
x1,x2,⋯,xn为V的一组标准正交基,T是正交变换
则
(
T
(
x
i
)
,
T
(
x
j
)
)
=
(
x
i
,
x
j
)
=
{
1
i
=
j
0
i
≠
j
\left(T\left(x_{i}\right), T\left(x_{j}\right)\right)=\left(x_{i}, x_{j}\right)= \begin{cases}1 & i=j \\ 0 & i \neq j\end{cases}
(T(xi),T(xj))=(xi,xj)={10i=ji=j
59. 正交矩阵
定义:
如果
Q
∈
R
n
×
n
Q \in R^{n \times n}
Q∈Rn×n, 且
Q
T
Q
=
I
,
Q
−
1
=
Q
T
Q^{T} Q=I, Q^{-1}=Q^{T}
QTQ=I,Q−1=QT 则称
Q
Q
Q 为正交矩阵
注:
(1) 正交矩阵的充要条件是列向量为两两正交 的单位向量。
Q
=
[
q
1
,
⋯
q
n
]
,
Q
T
Q
=
[
q
i
T
q
j
]
=
I
Q=\left[q_{1}, \cdots q_{n}\right], Q^{T} Q=\left[q_{i}^{T} q_{j}\right]=I
Q=[q1,⋯qn],QTQ=[qiTqj]=I
(2) 正交矩阵是非奇异矩阵
det
Q
=
±
1
\operatorname{det} Q=\pm 1
detQ=±1
(3) 正交矩阵的逆矩阵仍为正交矩阵
(
Q
−
1
)
T
Q
−
1
=
(
Q
T
)
−
1
Q
−
1
=
(
Q
Q
T
)
−
1
=
I
\left(Q^{-1}\right)^{T} Q^{-1}=\left(Q^{T}\right)^{-1} Q^{-1}=\left(Q Q^{T}\right)^{-1}=I
(Q−1)TQ−1=(QT)−1Q−1=(QQT)−1=I(4) 正交矩阵的乘积仍为正交矩阵
(
Q
1
Q
2
)
T
Q
1
Q
2
=
Q
2
T
Q
1
T
Q
1
Q
2
=
Q
2
T
Q
2
=
I
\left(\boldsymbol{Q}_{1} \boldsymbol{Q}_{2}\right)^{T} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}=\boldsymbol{Q}_{2}^{T} \boldsymbol{Q}_{1}^{T} \boldsymbol{Q}_{1} \boldsymbol{Q}_{2}=\boldsymbol{Q}_{2}^{T} \boldsymbol{Q}_{2}=\boldsymbol{I}
(Q1Q2)TQ1Q2=Q2TQ1TQ1Q2=Q2TQ2=I
60. n n n 维欧氏空间中正交变换的分类
设
n
n
n 维欧氏空间
V
V
V 中的线性变换
T
T
T 在标准正交基
x
1
,
x
2
,
⋯
,
x
n
x_{1}, x_{2}, \cdots, x_{n}
x1,x2,⋯,xn 下的矩阵是正交矩阵
A
\mathrm{A}
A, 则
∣
A
∣
=
±
1
|A|=\pm 1
∣A∣=±1.
1)如果
∣
A
∣
=
1
|A|=1
∣A∣=1, 则称
T
T
T 为第一类的 (旋转);
2) 如果
∣
A
∣
=
−
1
|A|=-1
∣A∣=−1, 则称
T
T
T 为第二类的.
61. 欧氏空间中的对称变换
定理: 设 A A A 是实对称矩阵, 在 n n n 维欧氏空间 R n R^{n} Rn 上 定义一个线性变换 T T T 如下:
T ( x ) = A x , ∀ x ∈ R n T(x)=A x, \quad \forall x \in R^{n} T(x)=Ax,∀x∈Rn则对任意 x , y ∈ R n x, y \in R^{n} x,y∈Rn, 有
( T ( x ) , y ) = ( x , T ( y ) ) (T(x), y)=(x, T(y)) (T(x),y)=(x,T(y))或 y T ( A x ) = x T ( A y ) y^{T}(A x)=x^{T}(A y) yT(Ax)=xT(Ay).
性质:
设实对称矩阵 A \mathbf{A} A 的特征值 λ 1 ≠ λ 2 \lambda_{1} \neq \lambda_{2} λ1=λ2, 对应的特征向量 为 x 1 x_{1} x1 和 x 2 x_{2} x2, 则 ( x 1 , x 2 ) = 0 \left(x_{1}, x_{2}\right)=0 (x1,x2)=0
62. 酉空间
定义: 线性空间
V
V
V, 复数域
K
K
K, 对
∀
x
,
y
∈
V
\forall x, y \in V
∀x,y∈V 定义一个复数
(
x
,
y
)
(x, y)
(x,y), 且满足
(1)
(
x
,
y
)
=
(
y
,
x
)
‾
(x, y)=\overline{(y, x)}
(x,y)=(y,x) (交换率)
(2)
(
k
x
,
y
)
=
k
(
x
,
y
)
(k x, y)=k(x, y)
(kx,y)=k(x,y) (齐次性)
(3)
(
x
+
y
,
z
)
=
(
x
,
z
)
+
(
y
,
z
)
,
∀
z
∈
V
(x+y, z)=(x, z)+(y, z), \quad \forall z \in V
(x+y,z)=(x,z)+(y,z),∀z∈V (分配率)
(4)
(
x
,
x
)
≥
0
(x, x) \geq 0
(x,x)≥0, 当且仅当
x
=
0
x=0
x=0 时
(
x
,
x
)
=
0
(x, x)=0
(x,x)=0. (正定性) 则称
(
x
,
y
)
(x, y)
(x,y) 为
x
x
x 和
y
y
y 的复内积, 并称
V
V
V 为西空间.
酉空间性质
(1)
(
x
,
k
y
)
=
k
ˉ
(
x
,
y
)
(x, k y)=\bar{k}(x, y)
(x,ky)=kˉ(x,y)
(2) 基的度量矩阵为Hermite正定矩阵
(3)
(
x
,
y
)
=
(
ξ
1
,
ξ
2
,
⋯
,
ξ
n
)
A
(
η
1
,
η
2
,
⋯
,
η
n
)
H
=
X
T
A
Y
ˉ
(x, y)=\left(\xi_{1}, \xi_{2}, \cdots, \xi_{n}\right) A\left(\eta_{1}, \eta_{2}, \cdots, \eta_{n}\right)^{H}=X^{T} A \bar{Y}
(x,y)=(ξ1,ξ2,⋯,ξn)A(η1,η2,⋯,ηn)H=XTAYˉ
(4) 酉变换:
(
T
x
,
T
x
)
=
(
x
,
x
)
∀
x
∈
V
A
H
A
=
I
(T x, T x)=(x, x) \quad \forall x \in V \quad A^{H} A=I
(Tx,Tx)=(x,x)∀x∈VAHA=I
T
T
T 是酉变换
⟷
T
\longleftrightarrow T
⟷T 在标准正交基下的矩阵
A
\mathrm{A}
A 是酉矩阵
62.5 Hermite变换与Hermite矩阵
(5) Hermite变换: ( T x , y ) = ( x , T y ) ∀ x , y ∈ V (T x, y)=(x, T y) \quad \forall x, y \in V (Tx,y)=(x,Ty)∀x,y∈V T T T 是Hermite变换 ⟷ T \longleftrightarrow T ⟷T 在标准正交基下的矩阵 A A A 是Hermite矩阵 A H = A A^{H}=A AH=A
63. 正规矩阵
定义: 正规矩阵:指
A
n
×
n
A_{n \times n}
An×n, 满足
A
H
A
=
A
A
H
A^{H} A=A A^{H}
AHA=AAH
如
A
∈
C
n
×
n
A \in C^{n \times n}
A∈Cn×n
(1)
A
H
=
A
⇒
A
A^{H}=A \Rightarrow A
AH=A⇒A 正规
(2)
A
H
A
=
I
⇒
A
A^{H} A=I \Rightarrow A
AHA=I⇒A 正规
如
A
∈
R
n
×
n
A \in R^{n \times n}
A∈Rn×n
(1)
A
T
=
A
⇒
A
A^{T}=A \Rightarrow A
AT=A⇒A 正规
(2)
A
T
A
=
I
⇒
A
A^{T} A=I \Rightarrow A
ATA=I⇒A 正规
64. 矩阵 A A A 的谱分解
定义:
A
n
×
n
A_{n \times n}
An×n 是Hermite矩阵, 则存在酉矩阵
P
n
×
n
P_{n \times n}
Pn×n, 使得
A
=
P
Λ
P
H
A=P \Lambda P^{H}
A=PΛPH, 划分
P
=
[
p
1
,
p
2
,
⋯
,
p
n
]
P=\left[p_{1}, p_{2}, \cdots, p_{n}\right]
P=[p1,p2,⋯,pn]
A
=
[
p
1
,
p
2
,
⋯
,
p
n
]
[
λ
1
⋱
λ
n
]
[
p
1
H
⋮
p
n
H
]
=
λ
1
(
p
1
p
1
H
)
+
⋯
+
λ
n
(
p
n
p
n
H
)
\begin{aligned} &A=\left[p_{1}, p_{2}, \cdots, p_{n}\right]\left[\begin{array}{lll} \lambda_{1} & & \\ & \ddots & \\ & & \lambda_{n} \end{array}\right]\left[\begin{array}{c} p_{1}^{H} \\ \vdots \\ p_{n}^{H} \end{array}\right] \\ &=\lambda_{1}\left(p_{1} p_{1}^{H}\right)+\cdots+\lambda_{n}\left(p_{n} p_{n}^{H}\right) \end{aligned}
A=[p1,p2,⋯,pn]⎣⎡λ1⋱λn⎦⎤⎣⎢⎡p1H⋮pnH⎦⎥⎤=λ1(p1p1H)+⋯+λn(pnpnH)
(1) 矩阵组
B
1
=
p
1
p
1
H
,
⋯
,
B
n
=
p
n
p
n
H
B_{1}=p_{1} p_{1}^{H}, \cdots, B_{n}=p_{n} p_{n}^{H}
B1=p1p1H,⋯,Bn=pnpnH 线性无关
(2)
rank
B
j
=
1
,
j
=
1
,
2
,
⋯
,
n
\operatorname{rank} B_{j}=1, j=1,2, \cdots, n
rankBj=1,j=1,2,⋯,n
称
(
∗
)
(*)
(∗) 式为矩阵
A
A
A 的谱分解。