全栈实战:基于BERT模型的情感分析系统--->FlaskAPI部署+HTML网页

本文详细介绍了如何从训练BERT模型开始,到使用Flask部署API服务,再到创建HTML网页实现用户交互的过程。内容涵盖模型服务端、API服务端和应用端的实现,以及部署思路与关键细节,包括环境配置、模型加载优化和API安全性等。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

 🍍个人主页:Yang-ai-cao
📕系列专栏:深度学习
🌸博学而日参省乎己,知明而行无过矣 

目录

个人主页:Yang-ai-cao

系列专栏:Python学习之旅

博学而日参省乎己,知明而行无过矣 

          一、基本架构

1. BERT模型服务端

2. API服务端

3. 应用端

二、部署思路与细节知识

(1)、部署思路

(2)、部署涉及的细节知识

三、集成和测试

1.启动BERT模型服务端:

2.启动API服务端

​编辑

3.打开应用端



在本篇博客中,我们将详细介绍如何从训练一个BERT模型开始,逐步实现API部署,并最终制作一个简单的网页应用来调用该API。整个过程包括模型训练、API服务端开发、网页端开发,以及如何将这些部分集成起来。看到许多朋友在使用BERT模型,网上多数文章只提到了模型的训练方法,后面的生产部署及调用并没有说明。这段时间使用BERT模型完成了从数据准备到生产部署的全流程,在这里整理出来,方便大家参考。

一、基本架构

实现思路

+-------------------+
|   应用端(HTML)     | 
+-------------------+
         ^^
         ||
         VV
+-------------------+
|     API服务端      | 
+-------------------+
         ^^
         ||
         VV
+-------------------+
|  BERT模型服务端    | 
+-------------------+

1. BERT模型服务端

功能

  • 加载预训练的 BERT-BiLSTM-CRF 模型。
  • 提供实时预测服务。

实现

  • 使用 Flask 或 FastAPI 创建一个服务端。
  • 加载模型时只在服务启动时进行,以提高效率。
  • 提供一个 HTTP 接口,接受文本输入并返回预测结果。

代码:BERT完整全流程代码,文件命名:sentiment_model.py

2. API服务端

接下来,我们将训练好的模型部署为一个API服务。我们使用Flask框架来实现。

功能

  • 调用 BERT 情感分类模型服务端的预测接口。
  • 提供一个 API 接口,供应用端调用。</
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值