🍍个人主页:Yang-ai-cao
📕系列专栏:深度学习
🌸博学而日参省乎己,知明而行无过矣
目录
在本篇博客中,我们将详细介绍如何从训练一个BERT模型开始,逐步实现API部署,并最终制作一个简单的网页应用来调用该API。整个过程包括模型训练、API服务端开发、网页端开发,以及如何将这些部分集成起来。看到许多朋友在使用BERT模型,网上多数文章只提到了模型的训练方法,后面的生产部署及调用并没有说明。这段时间使用BERT模型完成了从数据准备到生产部署的全流程,在这里整理出来,方便大家参考。
一、基本架构
实现思路
+-------------------+
| 应用端(HTML) |
+-------------------+
^^
||
VV
+-------------------+
| API服务端 |
+-------------------+
^^
||
VV
+-------------------+
| BERT模型服务端 |
+-------------------+
1. BERT模型服务端
功能:
- 加载预训练的 BERT-BiLSTM-CRF 模型。
- 提供实时预测服务。
实现:
- 使用 Flask 或 FastAPI 创建一个服务端。
- 加载模型时只在服务启动时进行,以提高效率。
- 提供一个 HTTP 接口,接受文本输入并返回预测结果。
代码:BERT完整全流程代码,文件命名:sentiment_model.py
2. API服务端
接下来,我们将训练好的模型部署为一个API服务。我们使用Flask框架来实现。
功能:
- 调用 BERT 情感分类模型服务端的预测接口。
- 提供一个 API 接口,供应用端调用。</