Jensen不等式

转载自:碎片化学习之数学(一):Jensen不等式
1337511-20190810165227646-1770235284.png
定义:对于一个凸函数\(f\),都有函数值的期望大于等于期望的函数值\[E[f(x)]\geq f(E[x])\]上式当中\(x\)是一个随机变量,它可以是离散的或者连续的,假设\(x~p(x)\)
回顾一下凸函数的定义:对于任意的值\(x_1,x_2\),且对任意的\(0\leq t \leq 1\),都有:\[tf(x_1)+(1-t)f(x_2)\geq f(tx_1+(1-t)x_2)\]上面的定义其实就是函数的任意两点之间的函数值都小于等于函数值对应的插值(加权平均)。当且仅当各变量都相等时取等.
对于离散变量 \(p(x=x_i)=p_i,\forall i \in [1,n]\),式子可以重新写为,其中\(\sum_{i=1}^n p_i=1\):\[E[f(x)]=\sum_{i=1}^n p_if(x_i) \\ f(E[x])=f(\sum_{i=1}^np_ix_i) \\ \Rightarrow \sum_{i=1}^np_if(x_i) \geq f(\sum_{i=1}^np_ix_i) \]
对于连续变量有积分形式:\[E[f(x)]=\int f(x)p(x)dx \\ f(E[x])=f(\int xp(x)dx) \\ \Rightarrow \\ \int f(x)p(x)dx \geq f(\int xp(x)dx)\]
对于定积分形式有:\[\int_a^b f(x)p(x)dx\geq f(\int_a^bxp(x)dx)\]
可以看出,上面凸函数的定义是离散形式Jensen不等式的一种特殊情况(令\(n=2,p_1=t,p_2=1-t\))。

转载于:https://www.cnblogs.com/xym4869/p/11332250.html

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值