Jensen不等式及在定积分证明中的应用

 

目录

前言

一、Jensen不等式的内容

二、Jensen不等式的证明

1.知识储备

2.数学归纳法证明

三、Jensen不等式在积分与函数值比较的应用

总结


 

前言

在数学分析这门课中,Jensen不等式的内容作为微分学的知识,出现在中值定理这一章节中,并在后续积分学的学习过程中,给出了积分凸函数值和凸函数积分值间的关系。下面我们就Jensen不等式的内容、证明和应用给出具体说明。


一、Jensen不等式的内容

f\left ( x\right )为区间I上的下凸(上凸)函数,则对于任意x_{i}\epsilon I和满足\sum_{i=1}^{n}\lambda _{i}= 1\lambda _ {i}> 0i=1,2,```,n),成立

f\left ( \sum_{i=1}^{n}\lambda _{i}x_{i} \right )\leqslant \sum_{i=1}^{n}\lambda _{i} f\left ( x_{i}\right )          (f\left ( \sum_{i=1}^{n}\lambda _{i}x_{i} \right )\geqslant \sum_{i=1}^{n}\lambda _{i} f\left ( x_{i}\right )).

特别地,取\lambda _ {i}= \frac{1}{n}i=1,2,```,n),就有

f\left ( \frac{1}{n}\sum_{i=1}^{n}x_{i} \right )\leqslant\frac{1}{n}\sum_{i=1}^{n}f\left ( x_{i}\right )          (  f\left ( \frac{1}{n}\sum_{i=1}^{n}x_{i} \right )\geqslant\frac{1}{n}\sum_{i=1}^{n}f\left ( x_{i}\right )).

二、Jensen不等式的证明

1.知识储备

下凸函数的性质:p_{1}f\left ( x_{1} \right )+p_{2}f\left ( x_{2} \right )\geqslantf\left ( p_{1}x_{1} +p_{2}x_{2}\right )  其中,p_{1}+p_{2}=1

2.数学归纳法证明

下面利用数学归纳法证明f\left (x \right )为下凸函数的情况下的Jensen不等式.

a、n=1,2时,Jensen不等式显然成立.

b、假设n=k时,Jensen不等式成立,即

\sum_{i=i}^{k}p_{i}f\left ( x _{i}\right )\geqslant f\left ( \sum_{i=1}^{k}p_{i}x _{i}\right )  ,其中\sum_{i=1}^{k}p_{i}= 1

则,n=k+1时:

\sum_{i=i}^{k+1}p_{i}f\left ( x _{i}\right )=p_{k+1}f\left ( x _{k+1}\right )+\sum_{i=i}^{k}p_{i}f\left ( x _{i}\right )

                    =p_{k+1}f\left ( x _{k+1}\right )+Z_{k}\sum_{i=i}^{k}\frac{p_{i}}{Z_{k}}f\left ( x _{i}\right ) , Z_{k}=\sum_{i=i}^{k}p_{i}

                    \geqslant p_{k+1}f\left ( x _{k+1}\right )+Z_{k}f\left ( \sum_{i=i}^{k}\frac{p_{i}}{Z_{k}}x _{i}\right ) , Z_{k}+p_{k+1}=\sum_{i=i}^{k+1}p_{i}=1

                   \geqslant f\left ( p_{k+1}x _{k +1}+Z_{k}\sum_{i=i}^{k}\frac{p_{i}}{Z_{k}}x _{i}\right ) ,

                   = f\left ( p_{k+1}x _{k +1}+\sum_{i=i}^{k}p_{i}x _{i}\right ) ,

                  = f\left ( \sum_{i=i}^{k+1}p_{i}x _{i}\right ) .

                   \sum_{i=i}^{k+1}p_{i}f\left ( x _{i}\right )\geqslant f\left ( \sum_{i=1}^{k+1} p_{i}x_{i}\right )  ,其中\sum_{i=i}^{k+1}p_{i}=1.

 说明:n=k+1时,Jensen不等式成立.

c.综合a,b可知Jensen不等式成立.

三、Jensen不等式在积分与函数值比较的应用

以题代点:

f\left ( x\right )\sqsubset a,b \sqsupset上连续,且f\left ( x\right )> 0,证明  \frac{1}{b-a}\int_{a}^{b}\ln f\left ( x \right )dx\leqslant \ln \left ( \frac{1}{b-a} \int_{a}^{b} f\left ( x \right )dx\right ).

证明:将区间\sqsubset a,b \sqsupset n等分,并设  x_{i}=a+\frac{i}{n}(b-a)   ( i=0,1,2,```,n),

          于是\Delta x_{i}=\frac{b-a}{n}     ( i=1,2,```,n).

          利用\ln x在 \left ( 0,+\infty \right ) 的凸性,由Jensen不等式得  \sum_{i=1}^{n}\frac{1}{n}\ln f\left (x_{i} \right )\leqslant \ln \left ( \sum_{i=1}^{n}\frac{1}{n} f\left (x_{i} \right )\right )

          即  \frac{1}{b-a}\sum_{i=1}^{n}\ln f\left (x_{i} \right )\Delta x_{i}\leqslant \ln \left (\frac{1}{b-a} \sum_{i=1}^{n}f\left (x_{i} \right )\Delta x_{i}\right ).

          由假设条件知,f\left ( x \right )\ln f\left ( x \right )\sqsubset a,b \sqsupset上连续,因此可积.在上式中令n\rightarrow \infty,则由定积分的定义及\ln x的连续性得

          \frac{1}{b-a}\int_{a}^{b}\ln f\left ( x \right )dx\leqslant \ln \left ( \frac{1}{b-a} \int_{a}^{b} f\left ( x \right )dx\right ).

即:上凸函数,积分小于函数值


总结

本文仅仅简单介绍了Jensen不等式在给出积分凸函数值和凸函数积分值间的关系的应用,随着学习的深入,数学与计算机的联系将更加紧密。

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Runge芝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值