目录
前言
在数学分析这门课中,Jensen不等式的内容作为微分学的知识,出现在中值定理这一章节中,并在后续积分学的学习过程中,给出了积分凸函数值和凸函数积分值间的关系。下面我们就Jensen不等式的内容、证明和应用给出具体说明。
一、Jensen不等式的内容
若为区间上的下凸(上凸)函数,则对于任意和满足的(1,2,```,n),成立
().
特别地,取(1,2,```,n),就有
( ).
二、Jensen不等式的证明
1.知识储备
下凸函数的性质: 其中,
2.数学归纳法证明
下面利用数学归纳法证明为下凸函数的情况下的Jensen不等式.
a、时,Jensen不等式显然成立.
b、假设时,Jensen不等式成立,即
,其中
则,时:
即
,其中.
说明:时,Jensen不等式成立.
c.综合a,b可知Jensen不等式成立.
三、Jensen不等式在积分与函数值比较的应用
以题代点:
设在上连续,且,证明 .
证明:将区间 n等分,并设 ( 0,1,2,```,n),
于是 ( 1,2,```,n).
利用在 的凸性,由Jensen不等式得 ,
即 .
由假设条件知,和在上连续,因此可积.在上式中令,则由定积分的定义及的连续性得
.
即:上凸函数,积分小于函数值
总结
本文仅仅简单介绍了Jensen不等式在给出积分凸函数值和凸函数积分值间的关系的应用,随着学习的深入,数学与计算机的联系将更加紧密。