Jensen不等式及在定积分证明中的应用

 

目录

前言

一、Jensen不等式的内容

二、Jensen不等式的证明

1.知识储备

2.数学归纳法证明

三、Jensen不等式在积分与函数值比较的应用

总结


 

前言

在数学分析这门课中,Jensen不等式的内容作为微分学的知识,出现在中值定理这一章节中,并在后续积分学的学习过程中,给出了积分凸函数值和凸函数积分值间的关系。下面我们就Jensen不等式的内容、证明和应用给出具体说明。


一、Jensen不等式的内容

f\left ( x\right )为区间I上的下凸(上凸)函数,则对于任意x_{i}\epsilon I和满足\sum_{i=1}^{n}\lambda _{i}= 1\lambda _ {i}> 0i=1,2,```,n),成立

f\left ( \sum_{i=1}^{n}\lambda _{i}x_{i} \right )\leqslant \sum_{i=1}^{n}\lambda _{i} f\left ( x_{i}\right )          (f\left ( \sum_{i=1}^{n}\lambda _{i}x_{i} \right )\geqslant \sum_{i=1}^{n}\lambda _{i} f\left ( x_{i}\right )).

特别地,取\lambda _ {i}= \frac{1}{n}i=1,2,```,n),就有

f\left ( \frac{1}{n}\sum_{i=1}^{n}x_{i} \right )\leqslant\frac{1}{n}\sum_{i=1}^{n}f\left ( x_{i}\right )       

评论 9
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Runge芝

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值