Longge's problem
Time Limit:1000MS Memory Limit:65536K
Total Submit:35 Accepted:10
Description
Longge is good at mathematics and he likes to think about hard mathematical problems which will be solved by some graceful algorithms. Now a problem comes: Given an integer N(1 < N < 2^31),you are to calculate ∑gcd(i, N) 1<=i <=N.
"Oh, I know, I know!" Longge shouts! But do you know? Please solve it.
Input
Input contain several test case.
A number N per line.
Output
For each N, output ,∑gcd(i, N) 1<=i <=N, a line
Sample Input
2 6
Sample Output
3 15
Hint
输出会超过32位整数类型
Close Encounter
Time Limit:1000MS Memory Limit:65536K
Total Submit:36 Accepted:11
Description
Lacking even a fifth grade education, the cows are having trouble with a fraction problem from their textbook. Please help them. The problem is simple:
Given a properly reduced fraction (i.e., the greatest common divisor of the numerator and denominator is 1, so the fraction cannot be further reduced) find the smallest properly reduced fraction with numerator and denominator in the range 1..32,767 that is closest (but not equal) to the given fraction.
Input
* Line 1: Two positive space-separated integers N and D (1 <= N < D <= 32,767), respectively the numerator and denominator of the given fraction
Output
* Line 1: Two space-separated integers, respectively the numerator and denominator of the smallest, closest fraction different from the input fraction.
Sample Input
2 3
Sample Output
21845 32767
Hint
INPUT DETAILS:
2/3
OUTPUT DETAILS:
21845/32767 = .666676839503.... ~ 0.666666.... = 2/3.
第二种方法,
分子分母从1/2开始依次与找