距离或相似度的测量算法在机器学习、数据挖掘和模式识别等领域中非常重要。以下是一些常见的距离和相似度测量方法:
距离度量
- 欧氏距离(Euclidean Distance)
- 用于计算多维空间中两点之间的最短距离。
- 公式: d ( p , q ) = ∑ i = 1 n ( q i − p i ) 2 d(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2} d(p,q)=i=1∑n(qi−pi)2
- 曼哈顿距离(Manhattan Distance)
- 也称为城市街区距离,计算两点在标准坐标系上的绝对轴距总和。
- 公式: d ( p , q ) = ∑ i = 1 n ∣ q i − p i ∣ d(p, q) = \sum_{i=1}^{n} |q_i - p_i| d(p,q)=i=1<