常见的距离和相似度测量方法

距离或相似度的测量算法在机器学习、数据挖掘和模式识别等领域中非常重要。以下是一些常见的距离和相似度测量方法

距离度量

  1. 欧氏距离(Euclidean Distance)
    • 用于计算多维空间中两点之间的最短距离。
    • 公式: d ( p , q ) = ∑ i = 1 n ( q i − p i ) 2 d(p, q) = \sqrt{\sum_{i=1}^{n} (q_i - p_i)^2} d(p,q)=i=1n(qipi)2
  2. 曼哈顿距离(Manhattan Distance)
    • 也称为城市街区距离,计算两点在标准坐标系上的绝对轴距总和。
    • 公式: d ( p , q ) = ∑ i = 1 n ∣ q i − p i ∣ d(p, q) = \sum_{i=1}^{n} |q_i - p_i| d(p,q)=i=1<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

abcwoabcwo

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值