雷达检测目标的原理理解
LFM信号(雷达发射信号)
- LMF数学表达式
s
(
t
)
=
r
e
c
t
(
2
t
T
)
e
j
2
π
(
f
c
+
K
2
t
)
t
s(t)=rect(\frac{2t}{T})e^{j2\pi (f_c+\frac{K}{2}t)t}
s(t)=rect(T2t)ej2π(fc+2Kt)t:
- 窗函数取 − T 2 < t < T 2 -\frac{T}{2}<t<\frac{T}{2} −2T<t<2T;(文中写的不合理)
- 调频斜率为 K = B / T K=B/T K=B/T( K K K对频率项求二次导可得)
- 脉宽 B B B指一个信号的时域的持续时间,带宽是指一个信号所占频率成分的宽度,脉宽越窄,带宽越长。
什么是匹配滤波器(接收端)
参考
定义:滤波器输出端的信号瞬时功率与噪声平均功率的比值最大的线性滤波器。(SNR最大)
如何保证SNR最大?(推导一下匹配滤波器的设计过程)
证明如下:
假设:
- 输入信号是 s ( t ) = x ( t ) + n ( t ) s(t)=x(t)+n(t) s(t)=x(t)+n(t), n ( t ) n (t) n(t)是白噪声信号,其功率谱密度(单位频率波的平均功率) P n ( f ) = N 0 2 P_n(f)=\frac{N_0}{2} Pn(f)=2N0
- 滤波器冲击响应 h ( t ) h(t) h(t),系统响应为 H ( f ) H(f) H(f)
- 输出响应 y ( t ) = x 0 ( t ) + n 0 ( t ) y(t) = x_0(t)+n_0(t) y(t)=x0(t)+n0(t)
其中:
x
0
(
t
)
=
∫
−
∞
+
∞
x
(
τ
)
h
(
t
−
τ
)
d
τ
x_0(t)=\int_{-\infty}^{+\infty}x(\tau)h(t-\tau)d\tau
x0(t)=∫−∞+∞x(τ)h(t−τ)dτ
X
0
(
f
)
=
X
(
f
)
H
(
f
)
X_0(f)=X(f)H(f)
X0(f)=X(f)H(f)
x
0
(
t
)
=
∫
−
∞
+
∞
X
0
(
f
)
e
j
2
π
f
t
d
f
x_0(t)=\int_{-\infty}^{+\infty}X_0(f)e^{j2\pi ft}df
x0(t)=∫−∞+∞X0(f)ej2πftdf
t
0
t_0
t0时刻信号功率:
P
x
(
t
0
)
=
∣
x
0
(
t
0
)
∣
2
P_x(t_0)=|x_0(t_0)|^2
Px(t0)=∣x0(t0)∣2
输出噪声信号功率谱密度:
ρ
n
0
=
N
0
2
∣
H
(
f
)
∣
2
\rho_{n_0}=\frac{N_0}{2}|H(f)|^2
ρn0=2N0∣H(f)∣2
输出噪声信号功率:
P
n
0
=
∫
−
∞
+
∞
ρ
n
0
d
f
P_{n_0}=\int_{-\infty}^{+\infty}\rho_{n_0}df
Pn0=∫−∞+∞ρn0df
信噪比SNR:
S
N
R
=
P
x
(
t
0
)
P
n
0
=
∣
∫
−
∞
+
∞
X
(
f
)
H
(
f
)
e
j
2
π
f
t
0
d
f
∣
2
∫
−
∞
+
∞
N
0
2
∣
H
(
f
)
∣
2
d
f
SNR=\frac{P_x(t_0)}{P_{n_0}}=\frac{|\int_{-\infty}^{+\infty}X(f)H(f)e^{j2\pi ft_0}df|^2}{\int_{-\infty}^{+\infty}\frac{N_0}{2}|H(f)|^2df}
SNR=Pn0Px(t0)=∫−∞+∞2N0∣H(f)∣2df∣∫−∞+∞X(f)H(f)ej2πft0df∣2
由柯西不等式:
∣
∫
−
∞
+
∞
X
(
f
)
Y
(
f
)
d
f
∣
2
≤
∫
−
∞
+
∞
∣
X
(
f
)
∣
2
d
f
∫
−
∞
+
∞
∣
Y
(
f
)
∣
2
d
f
|\int_{-\infty}^{+\infty}X(f)Y(f)df|^2\leq\int_{-\infty}^{+\infty}|X(f)|^2df\int_{-\infty}^{+\infty}|Y(f)|^2df
∣∫−∞+∞X(f)Y(f)df∣2≤∫−∞+∞∣X(f)∣2df∫−∞+∞∣Y(f)∣2df
分子用柯西不等式:(分子上的指数去哪儿了?有知道的的告诉下:))
S
N
R
≤
∫
−
∞
+
∞
∣
X
(
f
)
∣
2
d
f
N
0
2
SNR \leq \frac{\int_{-\infty}^{+\infty}|X(f)|^2df}{\frac{N_0}{2}}
SNR≤2N0∫−∞+∞∣X(f)∣2df
等式成立的条件:
H
(
f
)
=
k
X
∗
(
f
)
e
−
j
2
π
f
t
0
H(f)=kX^*(f)e^{-j2\pi ft_0}
H(f)=kX∗(f)e−j2πft0
两侧取傅里叶变换:
h
(
t
)
=
k
x
∗
(
t
0
−
t
)
h(t)=kx^*(t_0-t)
h(t)=kx∗(t0−t)
证毕。
LFM经过匹配滤波器
参考
LFM匹配滤波函数推导以及输出函数推导见参考,不再赘述。
其中有关匹配滤波后的脉宽定义:
τ
=
1
/
B
\tau =1/B
τ=1/B;压缩比:
D
=
T
/
τ
=
T
B
D=T/\tau=TB
D=T/τ=TB(实质上是时宽带宽积)
并且:t<<T时输出近似Sa函数