20200402学习笔记

雷达检测目标的原理理解

参考
参考

LFM信号(雷达发射信号)

  • LMF数学表达式 s ( t ) = r e c t ( 2 t T ) e j 2 π ( f c + K 2 t ) t s(t)=rect(\frac{2t}{T})e^{j2\pi (f_c+\frac{K}{2}t)t} s(t)=rect(T2t)ej2π(fc+2Kt)t
    • 窗函数取 − T 2 < t < T 2 -\frac{T}{2}<t<\frac{T}{2} 2T<t<2T;(文中写的不合理)
    • 调频斜率为 K = B / T K=B/T K=B/T K K K对频率项求二次导可得)
    • 脉宽 B B B指一个信号的时域的持续时间,带宽是指一个信号所占频率成分的宽度,脉宽越窄,带宽越长。

什么是匹配滤波器(接收端)

参考
定义:滤波器输出端的信号瞬时功率与噪声平均功率的比值最大的线性滤波器。(SNR最大)
如何保证SNR最大?(推导一下匹配滤波器的设计过程)
证明如下:
假设:

  • 输入信号是 s ( t ) = x ( t ) + n ( t ) s(t)=x(t)+n(t) s(t)=x(t)+n(t) n ( t ) n (t) n(t)是白噪声信号,其功率谱密度(单位频率波的平均功率) P n ( f ) = N 0 2 P_n(f)=\frac{N_0}{2} Pn(f)=2N0
  • 滤波器冲击响应 h ( t ) h(t) h(t),系统响应为 H ( f ) H(f) H(f)
  • 输出响应 y ( t ) = x 0 ( t ) + n 0 ( t ) y(t) = x_0(t)+n_0(t) y(t)=x0(t)+n0(t)

其中: x 0 ( t ) = ∫ − ∞ + ∞ x ( τ ) h ( t − τ ) d τ x_0(t)=\int_{-\infty}^{+\infty}x(\tau)h(t-\tau)d\tau x0(t)=+x(τ)h(tτ)dτ
X 0 ( f ) = X ( f ) H ( f ) X_0(f)=X(f)H(f) X0(f)=X(f)H(f)
x 0 ( t ) = ∫ − ∞ + ∞ X 0 ( f ) e j 2 π f t d f x_0(t)=\int_{-\infty}^{+\infty}X_0(f)e^{j2\pi ft}df x0(t)=+X0(f)ej2πftdf
t 0 t_0 t0时刻信号功率:
P x ( t 0 ) = ∣ x 0 ( t 0 ) ∣ 2 P_x(t_0)=|x_0(t_0)|^2 Px(t0)=x0(t0)2
输出噪声信号功率谱密度:
ρ n 0 = N 0 2 ∣ H ( f ) ∣ 2 \rho_{n_0}=\frac{N_0}{2}|H(f)|^2 ρn0=2N0H(f)2

输出噪声信号功率:
P n 0 = ∫ − ∞ + ∞ ρ n 0 d f P_{n_0}=\int_{-\infty}^{+\infty}\rho_{n_0}df Pn0=+ρn0df
信噪比SNR:
S N R = P x ( t 0 ) P n 0 = ∣ ∫ − ∞ + ∞ X ( f ) H ( f ) e j 2 π f t 0 d f ∣ 2 ∫ − ∞ + ∞ N 0 2 ∣ H ( f ) ∣ 2 d f SNR=\frac{P_x(t_0)}{P_{n_0}}=\frac{|\int_{-\infty}^{+\infty}X(f)H(f)e^{j2\pi ft_0}df|^2}{\int_{-\infty}^{+\infty}\frac{N_0}{2}|H(f)|^2df} SNR=Pn0Px(t0)=+2N0H(f)2df+X(f)H(f)ej2πft0df2
由柯西不等式:
∣ ∫ − ∞ + ∞ X ( f ) Y ( f ) d f ∣ 2 ≤ ∫ − ∞ + ∞ ∣ X ( f ) ∣ 2 d f ∫ − ∞ + ∞ ∣ Y ( f ) ∣ 2 d f |\int_{-\infty}^{+\infty}X(f)Y(f)df|^2\leq\int_{-\infty}^{+\infty}|X(f)|^2df\int_{-\infty}^{+\infty}|Y(f)|^2df +X(f)Y(f)df2+X(f)2df+Y(f)2df
分子用柯西不等式:(分子上的指数去哪儿了?有知道的的告诉下:))
S N R ≤ ∫ − ∞ + ∞ ∣ X ( f ) ∣ 2 d f N 0 2 SNR \leq \frac{\int_{-\infty}^{+\infty}|X(f)|^2df}{\frac{N_0}{2}} SNR2N0+X(f)2df
等式成立的条件:
H ( f ) = k X ∗ ( f ) e − j 2 π f t 0 H(f)=kX^*(f)e^{-j2\pi ft_0} H(f)=kX(f)ej2πft0
两侧取傅里叶变换:
h ( t ) = k x ∗ ( t 0 − t ) h(t)=kx^*(t_0-t) h(t)=kx(t0t)
证毕。

LFM经过匹配滤波器

参考
LFM匹配滤波函数推导以及输出函数推导见参考,不再赘述。
其中有关匹配滤波后的脉宽定义: τ = 1 / B \tau =1/B τ=1/B;压缩比: D = T / τ = T B D=T/\tau=TB D=T/τ=TB(实质上是时宽带宽积)
并且:t<<T时输出近似Sa函数

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值