SFM中的Bundle Adjustment(BA)

1、BA的概括

BA的目的是最小化重投影误差,他在SFM中担任的角色是:优化初步预测的参数
优化体现在:
①他的目标是最小化重投影误差,需要用数值方法计算极值,涉及到牛顿法 或 LM法 等迭代方法。
②他优化的参数 R , t R,t R,t(相机的外参数)。在BA优化前, R , t R,t R,t已被DLT算法预测,接下来BA通过重投影误差的最小化反过来调整已经预测好的 R , t R,t R,t
附一张流程图
在这里插入图片描述

2、BA的理论原理

2.1 旋转矩阵,旋转向量

1、介绍:旋转矩阵 R R R,表示两个相机坐标系间的变换矩阵;旋转向量 t t t表示两坐标系间平移关系。
两相机下的对应点之间关系为 p 2 = R 21 p 1 + t 21 p_2=R_{21}p_1+t_{21} p2=R21p1+t21
在这里插入图片描述

2、 R R R的性质:
R R T = I RR^T=I RRT=I 、 ② d e t ( R ) = 1 det(R)=1 det(R)=1
R R R自由度为3 、④ R R R是正交矩阵
根据R的性质③,R可用三维向量来简化表示,任意旋转都可以用一个旋转轴和一个旋转角来刻画此三维向量就是旋转向量 ϕ \phi ϕ
t t t的方向为旋转轴的方向, ϕ \phi ϕ的大小为旋转角度

4、 R 与 ϕ R与\phi Rϕ的关系:

R R T = I ⇒ R ′ R T + R ( R ′ ) T = 0 ⇒ R ′ R T 是 反 对 称 矩 阵 \quad \quad RR^T=I \\ \Rightarrow R'R^T+R(R')^T =0\\ \Rightarrow R'R^T是反对称矩阵 RRT=IRRT+R(R)T=0RRT
反对称矩阵是旋转向量的叉乘形式,所以可找到三维向量 ϕ \phi ϕ对应

R ’ R T = ϕ ∧ ⇒ R ′ = [ 0 , − ϕ 3 , ϕ 2 ϕ 3 , 0 , − ϕ 1 − ϕ 2 , ϕ 1 , 0 ] R ( 两 边 同 时 右 乘 R , R R T = I ) ⇒ R ≈ I + ϕ ∧ ( 泰 勒 ) \quad R’R^T=\phi^\wedge\\ \Rightarrow R'= \begin{bmatrix} 0 ,-\phi_3,\phi_2\\ \phi_3,0,-\phi_1\\ -\phi_2,\phi_1,0\\ \end{bmatrix}R \quad(两边同时右乘R,RR^T=I)\\\Rightarrow R\approx I+\phi^\wedge(泰勒) RRT=ϕR=0,ϕ3,ϕ2ϕ3,0,ϕ1ϕ2,ϕ1,0R(

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值